Comparison of Preconditioning Strategies in Energy Conserving Implicit Particle in Cell Methods

This work presents a set of preconditioning strategies able to significantly accelerate the performance of fully implicit energy-conserving Particle-in-Cell methods to a level that becomes competitive with semi-implicit methods. We compare three different preconditioners. We consider three methods and compare them with a straight unpreconditioned Jacobian Free Newton Krylov (JFNK) implementation. The first two focus, respectively, on improving the handling of particles (particle hiding) or fields (field hiding) within the JFNK iteration. The third uses the field hiding preconditioner within a direct Newton iteration where a Schwarz-decomposed Jacobian is computed analytically. Clearly, field hiding used with JFNK or with the direct Newton-Schwarz (DNS) method outperforms all method. We compare these implementations with a recent semi-implicit energy conserving scheme. Fully implicit methods are still lag behind in cost per cycle but not by a large margin when proper preconditioning is used. However, for exact energy conservation, preconditioned fully implicit methods are significantly easier to implement compared with semi-implicit methods and can be extended to fully relativistic physics.

[1]  Giovanni Lapenta,et al.  Particle simulations of space weather , 2012, J. Comput. Phys..

[2]  Luis Chacón,et al.  A multi-dimensional, energy- and charge-conserving, nonlinearly implicit, electromagnetic Vlasov-Darwin particle-in-cell algorithm , 2015, Comput. Phys. Commun..

[3]  Luis Chacón,et al.  Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations , 2013, J. Comput. Phys..

[4]  Thomas Lippert,et al.  On the scalability of the clusters-booster concept: a critical assessment of the DEEP architecture , 2012, FutureHPC '12.

[5]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[6]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[7]  William Daughton,et al.  Advances in petascale kinetic plasma simulation with VPIC and Roadrunner , 2009 .

[8]  Rizwan-uddin,et al.  Parsek2D: An Implicit Parallel Particle-in-Cell Code , 2009 .

[9]  Luis Chacon,et al.  Fully implicit particle-in-cell-algorithm , 2005 .

[10]  Giovanni Lapenta,et al.  Particle-based simulation of plasmas , 2016 .

[11]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[12]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[13]  J. U. Brackbill,et al.  CELEST1D: an implicit, fully kinetic model for low-frequency, electromagnetic plasma simulation , 1992 .

[14]  G. Lapenta,et al.  Multiple-scale kinetic simulations with the energy conserving semi-implicit particle in cell method , 2016, 1612.08289.

[15]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases , 1954 .

[16]  Giovanni Lapenta,et al.  Exactly energy conserving semi-implicit particle in cell formulation , 2016, J. Comput. Phys..

[17]  Paolo Ricci,et al.  Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas , 2006 .

[18]  Jonathan Arons,et al.  THE MAXIMUM ENERGY OF ACCELERATED PARTICLES IN RELATIVISTIC COLLISIONLESS SHOCKS , 2013, 1301.5333.

[19]  Jeremiah Brackbill,et al.  An implicit method for electromagnetic plasma simulation in two dimensions , 1982 .

[20]  Luis Chacón,et al.  An efficient mixed-precision, hybrid CPU-GPU implementation of a nonlinearly implicit one-dimensional particle-in-cell algorithm , 2011, J. Comput. Phys..

[21]  Bruce I. Cohen,et al.  Direct implicit large time-step particle simulation of plasmas , 1983 .

[22]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[23]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[24]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[25]  Luis Chacón,et al.  Development of a Consistent and Stable Fully Implicit Moment Method for Vlasov-Ampère Particle in Cell (PIC) System , 2013, SIAM J. Sci. Comput..

[26]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[27]  Stefano Markidis,et al.  On the ions acceleration via collisionless magnetic reconnection in laboratory plasmas , 2016, 1610.09104.

[28]  R. Waltz,et al.  Anomalous transport scaling in the DIII-D tokamak matched by supercomputer simulation. , 2003, Physical review letters.

[29]  Stefano Markidis,et al.  Particle acceleration and energy conservation in particle in cell simulations , 2011 .

[30]  Michael Marti,et al.  Proton shock acceleration in laser-plasma interactions. , 2004, Physical review letters.

[31]  William Gropp,et al.  Parallel Newton-Krylov-Schwarz Algorithms for the Transonic Full Potential Equation , 1996, SIAM J. Sci. Comput..