Topology of Magnetic Field and Coronal Heating in Solar Active Regions

[1]  J. Qiu,et al.  Two-dimensional singular points in an observed transverse field in solar active region NOAA 7321 , 1999 .

[2]  J. Qiu,et al.  The study of magnetic field configuration of a 1N/M1.1 flare in AR7321 , 1998 .

[3]  Yihua Yan,et al.  ANALYSIS OF it YOHKOH SXT CORONAL LOOPS AND CALCULATED FORCE-FREE MAGNETIC FIELD LINES FROM VECTOR MAGNETOGRAMS , 1997 .

[4]  E. Priest,et al.  CAN WE EXTRAPOLATE A MAGNETIC FIELD WHEN ITS TOPOLOGY IS COMPLEX? , 1997 .

[5]  Z. Mikić,et al.  PROBLEMS AND PROGRESS IN COMPUTING THREE-DIMENSIONAL CORONAL ACTIVE REGION MAGNETIC FIELDS FROM BOUNDARY DATA , 1997 .

[6]  W. Huaning DISTRIBUTION OF 2-D MAGNETIC SADDLE POINTS AND MORPHOLOGY OF FLARE KERNELS IN SOLAR ACTIVE REGIONS , 1997 .

[7]  Z. Mikić,et al.  RECONSTRUCTION OF THE THREE-DIMENSIONAL CORONAL MAGNETIC FIELD , 1997 .

[8]  Haimin Wang ANALYSES OF VECTOR MAGNETOGRAMS IN FLARE-PRODUCTIVE ACTIVE REGIONS , 1997 .

[9]  G. A. Gary,et al.  Neutral-Line Magnetic Shear and Enhanced Coronal Heating in Solar Active Regions , 1997 .

[10]  G. Roumeliotis The “Stress-and-Relax” Method for Reconstructing the Coronal Magnetic Field from Vector Magnetograph Data , 1996 .

[11]  Yihua Yan,et al.  Extrapolated vector magnetic field distributions of AR 6659 in June 1991 by boundary element method of constant-α force-free field , 1995 .

[12]  Yihua Yan The 3-D boundary element formulation of linear force-free magnetic fields with finite energy content in semi-infinite space , 1995 .

[13]  G. A. Gary,et al.  Reduction, analysis, and properties of electric current systems in solar active regions , 1995 .

[14]  Motokazu Noguchi,et al.  Solar flare telescope at Mitaka , 1995 .

[15]  Thomas R. Metcalf,et al.  Resolving the 180-degree ambiguity in vector magnetic field measurements: The ‘minimum’ energy solution , 1994 .

[16]  S. Tsuneta,et al.  The Soft X-ray Telescope for the SOLAR-A mission , 1991 .

[17]  D. Schnack,et al.  Dynamical evolution of twisted magnetic flux tubes. I, Equilibrium and linear stability , 1990 .

[18]  B. Low,et al.  Modeling solar force-free magnetic fields , 1990 .

[19]  G. A. Gary Linear force-free magnetic fields for solar extrapolation and interpretation , 1989 .

[20]  G. A. Gary,et al.  On the numerical computation of nonlinear force-free magnetic fields , 1985 .

[21]  M. Hagyard,et al.  Vector magnetic field evolution, energy storage, and associated photospheric velocity shear within a flare-productive active region , 1982 .

[22]  T. Sakurai Calculation of force-free magnetic field with non-constant α , 1981 .

[23]  Y. T. Chiu,et al.  Exact Green's function method of solar force-free magnetic-field computations with constant alpha. I - Theory and basic test cases , 1977 .

[24]  Yihua Yan,et al.  Enhanced coronal heating and 3D solar magnetic fields in AR 7321 , 2000 .

[25]  Yihua Yan,et al.  An analysis of photospheric vector magnetograms, Hα images and soft X-ray images in a superactive region NOAA 7321 , 1998 .

[26]  Alphonse C. Sterling,et al.  Observational Plasma Astrophysics: Five Years of Yohkoh and Beyond , 1998 .

[27]  R. Canfield,et al.  Is the solar chromospheric magnetic field force-free? , 1995 .

[28]  Takashi Sakurai,et al.  A study of magnetic energy build-up based on vector magnetograms , 1982 .

[29]  M. Raadu,et al.  On practical representation of magnetic field , 1972 .