Diffusionless phase transition with two order parameters in spin-crossover solids

The quantitative analysis of the interface boundary motion between high-spin and low-spin phases is presented. The nonlinear effect of the switching front rate on the temperature is shown. A compressible model of spin-crossover solid is studied in the framework of the Ising-like model with two-order parameters under statistical approach, where the effect of elastic strain on interaction integral is considered. These considerations led to examination of the relation between the order parameters during temperature changes. Starting from the phenomenological Hamiltonian, entropy has been derived using the mean field approach. Finally, the phase diagram, which characterizes the system, is numerically analyzed.

[1]  C. Enachescu,et al.  Kinetics of Nonequilibrium Transition in Spin-Crossover Compounds , 2015 .

[2]  C. Enachescu,et al.  Phase transition in spin-crossover compounds in the breathing crystal field model , 2014 .

[3]  M. Seredyuk,et al.  Spin crossover in soft matter , 2014 .

[4]  J. Linares,et al.  Lattice architecture effect on the cooperativity of spin transition coordination polymers , 2014 .

[5]  S. Miyashita,et al.  Effect of the short-range interaction on critical phenomena in elastic interaction systems , 2013, 1507.08421.

[6]  K. Boukheddaden,et al.  Velocity of the high-spin low-spin interface inside the thermal hysteresis loop of a spin-crossover crystal, via photothermal control of the interface motion. , 2013, Physical review letters.

[7]  K. Boukheddaden,et al.  When T(LIESST) Meets Thermal Hysteresis – a Theoretical Approach , 2013 .

[8]  M. Dimian,et al.  Size Effect and Role of Short‐ and Long‐Range Interactions on 1D Spin‐Crossover Systems within the Framework of an Ising‐Like Model , 2013 .

[9]  M. Halcrow Spin-crossover materials : properties and applications , 2013 .

[10]  A. Salinas-Castillo,et al.  Photographing the synergy between magnetic and colour properties in spin crossover material [Fe(NH2trz)3](BF4)2: a temperature sensor perspective. , 2013, Chemical communications.

[11]  C. Enachescu,et al.  Size dependent thermal hysteresis in spin crossover nanoparticles reflected within a Monte Carlo based Ising-like model , 2012 .

[12]  E. Collet,et al.  Intermolecular control of thermoswitching and photoswitching phenomena in two spin-crossover polymorphs , 2012 .

[13]  J. G. Haasnoot,et al.  Visualization and quantitative analysis of spatiotemporal behavior in a first-order thermal spin transition: A stress-driven multiscale process , 2011 .

[14]  J. G. Haasnoot,et al.  The propagation of the thermal spin transition of [Fe(btr)2(NCS)2]·H2O single crystals, observed by optical microscopy , 2011 .

[15]  Kamel Boukheddaden,et al.  Two-dimensional Ising-like model with specific edge effects for spin-crossover nanoparticles: A Monte Carlo study , 2011 .

[16]  J. Real,et al.  Thermal, pressure and light switchable spin-crossover materials. , 2005, Dalton transactions.

[17]  Y. Gudyma,et al.  Kinetics of optical thermal breakdown of a thin semiconducting film , 2001 .

[18]  D. D. Nikirsa,et al.  Kinetics of the photoinduced phase transition at the surface of a semiconductor with renormalized bandgap , 2001 .

[19]  Yann Garcia,et al.  Spin crossover phenomena in Fe(II) complexes , 2001 .

[20]  P. Gütlich,et al.  Correlations of the distribution of spin states in spin crossover compounds , 1999 .

[21]  B. Meerson,et al.  Domain stability, competition, growth, and selection in globally constrained bistable systems. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  A. Bousseksou,et al.  Ising-like model for the two-step spin-crossover , 1992 .

[23]  E. Müller,et al.  The effect of the lattice expansion on high spin ⇌ low spin transitions , 1982 .

[24]  T. Kambara Theory of high‐spin?low‐spin transitions in transition metal compounds induced by the Jahn–Teller effect , 1979 .

[25]  P. Guetlich,et al.  Moessbauer-effect study of the thermally induced spin transition in tris(2-picolylamine)iron(II) chloride. Dilution effect in mixed crystals of [FexZn1-x(2-pic)3]Cl2.C2H5OH (x = 0.15, 0.029, 0.0009) , 1978 .

[26]  P. Gütlich,et al.  Mössbauer effect study on low-spin 1A1 ⇌ high-spin 5T2 transition in tris(2-picolylamine) iron chloride I. Dilution effect in [FexZn1-x(2-pic)3]Ch2·C2H5OH , 1976 .

[27]  Harry G. Drickamer,et al.  Pressure‐Induced Electronic Changes in Compounds of Iron , 1972 .

[28]  J. Wajnflasz Etude de la transition „Low Spin”︁‐„High Spin”︁ dans les complexes octaédriques d'ion de transition , 1970 .