q-Coherent pairs and q-orthogonal polynomials
暂无分享,去创建一个
[1] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[2] I. Area,et al. \Delta -Coherent Pairs and Orthogonal Polynomials of a Discrete Variable , 2003 .
[3] Mizan Rahman,et al. On classical orthogonal polynomials , 1995 .
[4] T. Koornwinder. Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials , 1988 .
[5] W. Hahn. Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .
[6] R. Kanwal. Generalized Functions: Theory and Technique , 1998 .
[7] V. B. Uvarov,et al. Classical Orthogonal Polynomials of a Discrete Variable , 1991 .
[8] Tom H. Koornwinder,et al. Compact quantum groups and q-special functions , 1994 .
[9] I. Area,et al. Classification of all δ-Coherent Pairs , 2000 .
[10] W. Ames. Mathematics in Science and Engineering , 1999 .
[11] H. G. Meijer,et al. Determination of All Coherent Pairs , 1997 .
[12] J. Petronilho,et al. What is beyond coherent pairs of orthogonal polynomials , 1995 .
[13] Rene F. Swarttouw,et al. The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.
[14] T. Koornwinder,et al. BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .
[15] R. Koekoek. Generalizations of a q -analogue of Laguerre polynomials , 1992 .
[16] Arieh Iserles,et al. On polynomials orthogonal with respect to certain Sobolev inner products , 1991 .
[17] I. Area,et al. Inner products involving q -differences: the little q Laguerre-Sobolev polynomials , 2000 .
[18] Richard Askey,et al. A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols. , 1979 .
[19] Polinomios ortogonales Q-semiclásicos , 1996 .
[20] T. Chihara,et al. An Introduction to Orthogonal Polynomials , 1979 .
[21] R. Koekoek. Generalizations of the classical laguerre polynomials and some q-analogues , 1990 .
[22] Mizan Rahman,et al. Basic Hypergeometric Series , 1990 .
[23] N. Vilenkin,et al. Representation of Lie groups and special functions , 1991 .
[24] J. Petronilho,et al. Orthogonal polynomials and coherent pairs: the classical case , 1995 .