q-Coherent pairs and q-orthogonal polynomials

In this paper we introduce the concept of q-coherent pair of linear functionals. We prove that if (u"0,u"1) is a q-coherent pair of linear functionals, then at least one of them has to be a q-classical linear functional. Moreover, we present the classification of all q-coherent pairs of positive-definite linear functionals when u"0 or u"1 is either the little q-Jacobi linear functional or the little q-Laguerre/Wall linear functional. Finally, by using limit processes, we recover the classification of coherent pairs of linear functionals stated by Meijer.

[1]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[2]  I. Area,et al.  \Delta -Coherent Pairs and Orthogonal Polynomials of a Discrete Variable , 2003 .

[3]  Mizan Rahman,et al.  On classical orthogonal polynomials , 1995 .

[4]  T. Koornwinder Group theoretic interpretations of Askey's scheme of hypergeometric orthogonal polynomials , 1988 .

[5]  W. Hahn Über Orthogonalpolynome, die q-Differenzengleichungen genügen , 1949 .

[6]  R. Kanwal Generalized Functions: Theory and Technique , 1998 .

[7]  V. B. Uvarov,et al.  Classical Orthogonal Polynomials of a Discrete Variable , 1991 .

[8]  Tom H. Koornwinder,et al.  Compact quantum groups and q-special functions , 1994 .

[9]  I. Area,et al.  Classification of all δ-Coherent Pairs , 2000 .

[10]  W. Ames Mathematics in Science and Engineering , 1999 .

[11]  H. G. Meijer,et al.  Determination of All Coherent Pairs , 1997 .

[12]  J. Petronilho,et al.  What is beyond coherent pairs of orthogonal polynomials , 1995 .

[13]  Rene F. Swarttouw,et al.  The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac , 1996, math/9602214.

[14]  T. Koornwinder,et al.  BASIC HYPERGEOMETRIC SERIES (Encyclopedia of Mathematics and its Applications) , 1991 .

[15]  R. Koekoek Generalizations of a q -analogue of Laguerre polynomials , 1992 .

[16]  Arieh Iserles,et al.  On polynomials orthogonal with respect to certain Sobolev inner products , 1991 .

[17]  I. Area,et al.  Inner products involving q -differences: the little q Laguerre-Sobolev polynomials , 2000 .

[18]  Richard Askey,et al.  A Set of Orthogonal Polynomials That Generalize the Racah Coefficients or 6 - j Symbols. , 1979 .

[19]  Polinomios ortogonales Q-semiclásicos , 1996 .

[20]  T. Chihara,et al.  An Introduction to Orthogonal Polynomials , 1979 .

[21]  R. Koekoek Generalizations of the classical laguerre polynomials and some q-analogues , 1990 .

[22]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[23]  N. Vilenkin,et al.  Representation of Lie groups and special functions , 1991 .

[24]  J. Petronilho,et al.  Orthogonal polynomials and coherent pairs: the classical case , 1995 .