Cohesive Zone-Based Damage Evolution in Periodic Materials Via Finite-Volume Homogenization

[1]  P. Geubelle,et al.  Impact-induced delamination of composites: A 2D simulation , 1998 .

[2]  L.F.M. da Silva,et al.  Adhesively bonded joints in composite materials: An overview , 2009 .

[3]  Marek-Jerzy Pindera,et al.  Plane Analysis of Finite Multilayered Media With Multiple Aligned Cracks—Part I: Theory , 2007 .

[4]  M. Elices,et al.  The cohesive zone model: advantages, limitations and challenges , 2002 .

[5]  Alojz Ivankovic,et al.  Finite volume analysis of dynamic fracture phenomena – I. A node release methodology , 2002 .

[6]  Marek-Jerzy Pindera,et al.  Finite-volume micromechanics of periodic materials: Past, present and future , 2012 .

[7]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[8]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[9]  M. Pindera,et al.  Targeting the finite-deformation response of wavy biological tissues with bio-inspired material architectures. , 2013, Journal of the mechanical behavior of biomedical materials.

[10]  N. Chandra,et al.  Some issues in the application of cohesive zone models for metal–ceramic interfaces , 2002 .

[11]  Subra Suresh,et al.  Statistical Properties of Residual Stresses and Intergranular Fracture in Ceramic Materials , 1993 .

[12]  Yogesh Bansal,et al.  EFFICIENT REFORMULATION OF THE THERMOELASTIC HIGHER-ORDER THEORY FOR FUNCTIONALLY GRADED MATERIALS , 2003 .

[13]  Y. Bansal,et al.  Micromechanics of spatially uniform heterogeneous media: A critical review and emerging approaches , 2009 .

[14]  Yogesh Bansal,et al.  Finite-volume direct averaging micromechanics of heterogeneous materials with elastic–plastic phases☆ , 2006 .

[15]  Ž. Tuković,et al.  Arbitrary crack propagation in multi-phase materials using the finite volume method , 2013 .

[16]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[17]  M. Pindera,et al.  Thermo-elastic moduli of periodic multilayers with wavy architectures , 2009 .

[18]  J. G. Williams,et al.  Application of the finite volume method to the analysis of dynamic fracture problems , 1994 .

[19]  Somnath Ghosh,et al.  A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding , 2005 .

[20]  W. S. Teo,et al.  Modelling the fracture behaviour of adhesively-bonded joints as a function of test rate , 2011 .

[21]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[22]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[23]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[24]  Jian Wu,et al.  Continuum modeling of interfaces in polymer matrix composites reinforced by carbon nanotubes , 2007 .

[25]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[26]  Nicolas Charalambakis,et al.  Homogenization Techniques and Micromechanics. A Survey and Perspectives , 2010 .

[27]  Alojz Ivankovic,et al.  Finite‐volume stress analysis in multi‐material linear elastic body , 2013 .

[28]  Marek-Jerzy Pindera,et al.  Parametric formulation of the finite-volume theory for functionally graded materials-Part I: Analysis , 2007 .

[29]  A Theory Of Elasticity With Microstructure For Directionally Reinforced Composites , 1976 .

[30]  Yogesh Bansal,et al.  A Second Look at the Higher-Order Theory for Periodic Multiphase Materials , 2005 .

[31]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[32]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[33]  Marek-Jerzy Pindera,et al.  Parametric finite-volume micromechanics of periodic materials with elastoplastic phases , 2009 .

[34]  Weeratunge Malalasekera,et al.  An introduction to computational fluid dynamics - the finite volume method , 2007 .

[35]  M. Pindera,et al.  A Locally Exact Homogenization Theory for Periodic Microstructures With Isotropic Phases , 2008 .

[36]  Yong-Rak Kim,et al.  Cohesive zone model to predict fracture in bituminous materials and asphaltic pavements: state-of-the-art review , 2011 .

[37]  Marek-Jerzy Pindera,et al.  Generalized FVDAM Theory for Periodic Materials Undergoing Finite Deformations—Part I: Framework , 2014 .

[38]  G. Paulino,et al.  Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces , 2011 .

[39]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[40]  Philippe H. Geubelle,et al.  Multiscale modelling of particle debonding in reinforced elastomers subjected to finite deformations , 2006 .

[41]  Glaucio H. Paulino,et al.  A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material , 2006 .

[42]  Marek-Jerzy Pindera,et al.  Parametric Finite-Volume Micromechanics of Uniaxial Continuously-Reinforced Periodic Materials With Elastic Phases , 2008 .

[43]  A. Ivankovic,et al.  Analysis of two-phase ceramic composites using micromechanical models , 2014 .