Viscous Regularization of the Euler Equations and Entropy Principles

This paper investigates a general class of viscous regularizations of the compressible Euler equations. A unique regularization is identified that is compatible with all the generalized entropies, ` la (Harten et al., SIAM J. Numer. Anal., 35 (1998), pp. 2117-2127), and satisfies the minimum entropy principle. A connection with a recently proposed phenomenological model by (H. Brenner, Phys. A, 370 (2006), pp. 190-224) is made.

[1]  Eitan Tadmor,et al.  A minimum entropy principle in the gas dynamics equations , 1986 .

[2]  Ami Harten,et al.  Convex Entropies and Hyperbolicity for General Euler Equations , 1998 .

[3]  Chi-Wang Shu,et al.  On positivity preserving finite volume schemes for Euler equations , 1996 .

[4]  P. Raviart,et al.  Numerical Approximation of Hyperbolic Systems of Conservation Laws , 1996, Applied Mathematical Sciences.

[5]  P. Lax,et al.  Systems of conservation equations with a convex extension. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[6]  I. Oppenheim Beyond Equilibrium Thermodynamics , 2006 .

[7]  Kun Xu,et al.  Positivity-Preserving Analysis of Explicit and Implicit Lax–Friedrichs Schemes for Compressible Euler Equations , 2000, J. Sci. Comput..

[8]  A. Harten On the symmetric form of systems of conservation laws with entropy , 1983 .

[9]  Eduard Feireisl,et al.  New Perspectives in Fluid Dynamics: Mathematical Analysis of a Model Proposed by Howard Brenner , 2009 .

[10]  P. Lax Shock Waves and Entropy , 1971 .

[11]  ShakibFarzin,et al.  A new finite element formulation for computational fluid dynamics , 1991 .

[12]  Eitan Tadmor,et al.  Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.

[13]  P. Lax Weak solutions of nonlinear hyperbolic equations and their numerical computation , 1954 .

[14]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: I. Symmetric forms of the compressible Euler and Navier—Stokes equations and the second law of thermodynamics , 1986 .

[15]  Howard Brenner,et al.  Fluid mechanics revisited , 2006 .

[16]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[17]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[18]  Denis Serre,et al.  Viscous System of Conservation Laws: Singular Limits , 2011 .