On Subsets of the Normal Rational Curve

A normal rational curve of the <inline-formula> <tex-math notation="LaTeX">$(k-1)$ </tex-math></inline-formula>-dimensional projective space over <inline-formula> <tex-math notation="LaTeX">${\mathbb F}_{q}$ </tex-math></inline-formula> is an arc of size <inline-formula> <tex-math notation="LaTeX">$q+1$ </tex-math></inline-formula>, since any <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula> points of the curve span the whole space. In this paper, we will prove that if <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> is odd, then a subset of size <inline-formula> <tex-math notation="LaTeX">$3k-6$ </tex-math></inline-formula> of a normal rational curve cannot be extended to an arc of size <inline-formula> <tex-math notation="LaTeX">$q+2$ </tex-math></inline-formula>. In fact, we prove something slightly stronger. Suppose that <inline-formula> <tex-math notation="LaTeX">$q$ </tex-math></inline-formula> is odd and <inline-formula> <tex-math notation="LaTeX">$E$ </tex-math></inline-formula> is a <inline-formula> <tex-math notation="LaTeX">$(2k-3)$ </tex-math></inline-formula>-subset of an arc <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> of size <inline-formula> <tex-math notation="LaTeX">$3k-6$ </tex-math></inline-formula>. If <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> projects to a subset of a conic from every <inline-formula> <tex-math notation="LaTeX">$(k-3)$ </tex-math></inline-formula>-subset of <inline-formula> <tex-math notation="LaTeX">$E$ </tex-math></inline-formula>, then <inline-formula> <tex-math notation="LaTeX">$G$ </tex-math></inline-formula> cannot be extended to an arc of size <inline-formula> <tex-math notation="LaTeX">$q+2$ </tex-math></inline-formula>. Stated in terms of error-correcting codes we prove that a <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-dimensional linear maximum distance separable code of length <inline-formula> <tex-math notation="LaTeX">$3k-6$ </tex-math></inline-formula> over a field <inline-formula> <tex-math notation="LaTeX">${\mathbb F}_{q}$ </tex-math></inline-formula> of odd characteristic, which can be extended to a Reed–Solomon code of length <inline-formula> <tex-math notation="LaTeX">$q+1$ </tex-math></inline-formula>, cannot be extended to a linear maximum distance separable code of length <inline-formula> <tex-math notation="LaTeX">$q+2$ </tex-math></inline-formula>.