Universality at the Edge of the Spectrum¶in Wigner Random Matrices

Abstract:We prove universality at the edge for rescaled correlation functions of Wigner random matrices in the limit n→+∞. As a corollary, we show that, after proper rescaling, the 1th, 2nd, 3rd, etc. eigenvalues of Wigner random hermitian (resp. real symmetric) matrix weakly converge to the distributions established by Tracy and Widom in G.U.E. (G.O.E.) cases.

[1]  E. Wigner Characteristic Vectors of Bordered Matrices with Infinite Dimensions I , 1955 .

[2]  E. Wigner On the Distribution of the Roots of Certain Symmetric Matrices , 1958 .

[3]  C. Porter,et al.  STATISTICAL PROPERTIES OF ATOMIC AND NUCLEAR SPECTRA , 1960 .

[4]  L. Arnold,et al.  On Wigner's semicircle law for the eigenvalues of random matrices , 1971 .

[5]  L. Pastur On the spectrum of random matrices , 1972 .

[6]  V. Uppuluri,et al.  Asymptotic distribution of eigenvalues of random matrices , 1972 .

[7]  K. Wachter The Strong Limits of Random Matrix Spectra for Sample Matrices of Independent Elements , 1978 .

[8]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[9]  P. A. Mello,et al.  Random matrix physics: Spectrum and strength fluctuations , 1981 .

[10]  V. Girko Spectral theory of random matrices , 1985 .

[11]  J. W. Silverstein The Smallest Eigenvalue of a Large Dimensional Wishart Matrix , 1985 .

[12]  D. Voiculescu Limit laws for Random matrices and free products , 1991 .

[13]  M. Bowick,et al.  Universal scaling of the tail of the density of eigenvalues in random matrix models , 1991 .

[14]  L. Pastur,et al.  Limiting eigenvalue distribution for band random matrices , 1992 .

[15]  Z. Bai,et al.  Convergence rate of expected spectral distributions of large random matrices , 2008 .

[16]  Z. Bai,et al.  Convergence Rate of Expected Spectral Distributions of Large Random Matrices. Part I. Wigner Matrices , 1993 .

[17]  A. Zee,et al.  Universality of the correlations between eigenvalues of large random matrices , 1993 .

[18]  K. Życzkowski,et al.  Random unitary matrices , 1994 .

[19]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[20]  Boris A. Khoruzhenko,et al.  Asymptotic properties of large random matrices with independent entries , 1996 .

[21]  Alexander Its,et al.  A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics , 1997 .

[22]  L. Pastur,et al.  Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles , 1997 .

[23]  Alice Guionnet,et al.  Large deviations for Wigner's law and Voiculescu's non-commutative entropy , 1997 .

[24]  T. H. Baker,et al.  Finite-N fluctuation formulas for random matrices , 1997 .

[25]  A. Soshnikov Level spacings distribution for large random matrices: Gaussian fluctuations , 1998 .

[26]  Craig A. Tracy,et al.  Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices , 1998 .

[27]  E. Brezin,et al.  UNIVERSAL SINGULARITY AT THE CLOSURE OF A GAP IN A RANDOM MATRIX THEORY , 1998 .

[28]  K. Johansson On fluctuations of eigenvalues of random Hermitian matrices , 1998 .

[29]  A. Soshnikov,et al.  A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices , 1998 .

[30]  Harold Widom,et al.  On the Relation Between Orthogonal, Symplectic and Unitary Matrix Ensembles , 1999 .

[31]  G. Olshanski,et al.  Asymptotics of Plancherel measures for symmetric groups , 1999, math/9905032.

[32]  Craig A. Tracy,et al.  Random Unitary Matrices, Permutations and Painlevé , 1999 .

[33]  A. Khorunzhy,et al.  Asymptotic distribution of smoothed eigenvalue density. II. Wigner random matrices , 1999 .

[34]  Alexei Borodin,et al.  Longest Increasing Subsequences of Random Colored Permutations , 1999, Electron. J. Comb..

[35]  A. Boutet de Monvel,et al.  Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices , 1999 .

[36]  A Note on the Eigenvalue Density of Random Matrices , 1998, math-ph/9804006.

[37]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[38]  Pavel Bleher,et al.  Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model , 1999, math-ph/9907025.

[39]  Estelle L. Basor,et al.  Determinants of Airy Operators and Applications to Random Matrices , 1999 .

[40]  Stephanos Venakides,et al.  UNIFORM ASYMPTOTICS FOR POLYNOMIALS ORTHOGONAL WITH RESPECT TO VARYING EXPONENTIAL WEIGHTS AND APPLICATIONS TO UNIVERSALITY QUESTIONS IN RANDOM MATRIX THEORY , 1999 .

[41]  P. Moerbeke,et al.  Random Matrices and Random Permutations , 2000 .

[42]  C. Tracy,et al.  On the distributions of the lengths of the longest monotone subsequences in random words , 1999, math/9904042.