Efficient geostatistical inversion of transient groundwater flow using preconditioned nonlinear conjugate gradients

Abstract In the geostatistical inverse problem of subsurface hydrology, continuous hydraulic parameter fields, in most cases hydraulic conductivity, are estimated from measurements of dependent variables, such as hydraulic heads, under the assumption that the parameter fields are autocorrelated random space functions. Upon discretization, the continuous fields become large parameter vectors with O ( 10 4 − 10 7 ) elements. While cokriging-like inversion methods have been shown to be efficient for highly resolved parameter fields when the number of measurements is small, they require the calculation of the sensitivity of each measurement with respect to all parameters, which may become prohibitive with large sets of measured data such as those arising from transient groundwater flow. We present a Preconditioned Conjugate Gradient method for the geostatistical inverse problem, in which a single adjoint equation needs to be solved to obtain the gradient of the objective function. Using the autocovariance matrix of the parameters as preconditioning matrix, expensive multiplications with its inverse can be avoided, and the number of iterations is significantly reduced. We use a randomized spectral decomposition of the posterior covariance matrix of the parameters to perform a linearized uncertainty quantification of the parameter estimate. The feasibility of the method is tested by virtual examples of head observations in steady-state and transient groundwater flow. These synthetic tests demonstrate that transient data can reduce both parameter uncertainty and time spent conducting experiments, while the presented methods are able to handle the resulting large number of measurements.

[1]  Tian-Chyi J. Yeh,et al.  Characterization of aquifer heterogeneity using transient hydraulic tomography , 2004 .

[2]  Wei Li,et al.  Efficient parallelization of geostatistical inversion using the quasi-linear approach , 2012, Comput. Geosci..

[3]  John Doherty,et al.  Ground Water Model Calibration Using Pilot Points and Regularization , 2003, Ground water.

[4]  Wei Li,et al.  Efficient geostatistical inverse methods for structured and unstructured grids , 2006 .

[5]  P. Kitanidis,et al.  Principal Component Geostatistical Approach for large-dimensional inverse problems , 2014, Water resources research.

[6]  W. Nowak,et al.  Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown , 2005 .

[7]  Peter Bastian,et al.  Generic implementation of finite element methods in the Distributed and Unified Numerics Environment (DUNE) , 2010, Kybernetika.

[8]  Peter K. Kitanidis,et al.  How Observations and Structure Affect the Geostatistical Solution to the Steady‐State Inverse Problem , 1998 .

[9]  Peter K. Kitanidis,et al.  A field proof‐of‐concept of aquifer imaging using 3‐D transient hydraulic tomography with modular, temporarily‐emplaced equipment , 2012 .

[10]  Wolfgang Nowak,et al.  Best unbiased ensemble linearization and the quasi‐linear Kalman ensemble generator , 2009 .

[11]  P. Kitanidis Introduction to Geostatistics: Applications in Hydrogeology , 1997 .

[12]  G. Kruseman,et al.  Analysis and Evaluation of Pumping Test Data , 1983 .

[13]  M. Marietta,et al.  Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments , 1995 .

[14]  Y. Rubin,et al.  A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields , 2010 .

[15]  Chris Snyder,et al.  A Comparison between the 4DVAR and the Ensemble Kalman Filter Techniques for Radar Data Assimilation , 2005 .

[16]  J. Baglama,et al.  Numerical approximation of the product of the square root of a matrix with a vector , 2000 .

[17]  A. Saibaba,et al.  Fast computation of uncertainty quantification measures in the geostatistical approach to solve inverse problems , 2014, 1404.1263.

[18]  D. McLaughlin,et al.  A Reassessment of the Groundwater Inverse Problem , 1996 .

[19]  P. Kitanidis,et al.  An Application of the Geostatistical Approach to the Inverse Problem in Two-Dimensional Groundwater Modeling , 1984 .

[20]  Harrie-Jan Hendricks Franssen,et al.  Ensemble Kalman filtering versus sequential self-calibration for inverse modelling of dynamic groundwater flow systems , 2009 .

[21]  Alberto Guadagnini,et al.  Comparison of Ensemble Kalman Filter groundwater-data assimilation methods based on stochastic moment equations and Monte Carlo simulation , 2014 .

[22]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[23]  William W. Hager,et al.  Updating the Inverse of a Matrix , 1989, SIAM Rev..

[24]  Minghui Jin,et al.  AN ITERATIVE STOCHASTIC INVERSE METHOD: CONDITIONAL EFFECTIVE TRANSMISSIVITY AND HYDRAULIC HEAD FIELDS , 1995 .

[25]  W. Kinzelbach,et al.  Real‐time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem , 2008 .

[26]  Jérôme Vialard,et al.  Three- and Four-Dimensional Variational Assimilation with a General Circulation Model of the Tropical Pacific Ocean. Part I: Formulation, Internal Diagnostics, and Consistency Checks , 2003 .

[27]  Wolfgang Nowak,et al.  Parameter Estimation by Ensemble Kalman Filters with Transformed Data , 2010 .

[28]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.

[29]  W. Nowak,et al.  Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data , 2006 .

[30]  Junfeng Zhu,et al.  Laboratory sandbox validation of transient hydraulic tomography , 2007 .

[31]  P. Kitanidis,et al.  Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling , 2004 .

[32]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 3. Application to Synthetic and Field Data , 1986 .

[33]  You‐Kuan Zhang Stochastic Methods for Flow in Porous Media: Coping with Uncertainties , 2001 .

[34]  Alberto Guadagnini,et al.  Data assimilation and parameter estimation via ensemble Kalman filter coupled with stochastic moment equations of transient groundwater flow , 2013 .

[35]  Peter K. Kitanidis,et al.  Sensitivity of temporal moments calculated by the adjoint-state method and joint inversing of head and tracer data , 2000 .

[36]  G. Pope,et al.  Inverse modeling of partitioning interwell tracer tests: A streamline approach , 2002 .

[37]  Peter Bastian,et al.  On the generic parallelisation of iterative solvers for the finite element method , 2008, Int. J. Comput. Sci. Eng..

[38]  M. Cardiff,et al.  3‐D transient hydraulic tomography in unconfined aquifers with fast drainage response , 2011 .

[39]  Shuyun Liu,et al.  Effectiveness of hydraulic tomography: Sandbox experiments , 2001 .

[40]  Georg Stadler,et al.  Extreme-scale UQ for Bayesian inverse problems governed by PDEs , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[41]  Johan Valstar,et al.  A representer‐based inverse method for groundwater flow and transport applications , 2004 .

[42]  Peter K. Kitanidis,et al.  Large‐scale hydraulic tomography and joint inversion of head and tracer data using the Principal Component Geostatistical Approach (PCGA) , 2014 .

[43]  Allan L. Gutjahr,et al.  An Iterative Cokriging‐Like Technique for Ground‐Water Flow Modeling , 1995 .

[44]  D. Kalman A Singularly Valuable Decomposition: The SVD of a Matrix , 1996 .

[45]  T. Yeh,et al.  Analysis of hydraulic tomography using temporal moments of drawdown recovery data , 2006 .

[46]  A. Sahuquillo,et al.  Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory , 1997 .

[47]  Akhil Datta-Gupta,et al.  Asymptotic solutions for solute transport: A formalism for tracer tomography , 1999 .

[48]  Dongxiao Zhang,et al.  Probabilistic collocation method for flow in porous media: Comparisons with other stochastic methods , 2007 .

[49]  Junfeng Zhu,et al.  Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy , 2007 .

[50]  F. Mesinger,et al.  Four-dimensional variational assimilation of precipitation data , 1995 .

[51]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[52]  Tian-Chyi J. Yeh,et al.  Hydraulic/partitioning tracer tomography for characterization of dense nonaqueous phase liquid source zones , 2007 .

[53]  Yan Chen,et al.  Data assimilation for transient flow in geologic formations via ensemble Kalman filter , 2006 .

[54]  Guido Schneider,et al.  Temporal moments revisited: Why there is no better way for physically based model reduction in time , 2012 .

[55]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[56]  Wei Li,et al.  Three‐Dimensional Geostatistical Inversion of Flowmeter and Pumping Test Data , 2008, Ground water.

[57]  W. Nowak,et al.  A modified Levenberg-Marquardt algorithm for quasi-linear geostatistical inversing , 2004 .

[58]  C. Tiedeman,et al.  Effective Groundwater Model Calibration , 2007 .

[59]  P. Kitanidis Quasi‐Linear Geostatistical Theory for Inversing , 1995 .

[60]  Peter Bastian,et al.  The Iterative Solver Template Library , 2006, PARA.

[61]  C. R. Dietrich,et al.  Fast and Exact Simulation of Stationary Gaussian Processes through Circulant Embedding of the Covariance Matrix , 1997, SIAM J. Sci. Comput..

[62]  G. Dagan,et al.  Stochastic identification of transmissivity and effective recharge in steady groundwater flow: 2. Case study , 1987 .

[63]  Olaf A. Cirpka,et al.  Fully coupled hydrogeophysical inversion of synthetic salt tracer experiments , 2010 .

[64]  William W.-G. Yeh,et al.  Coupled inverse problems in groundwater modeling - 1. Sensitivity analysis and parameter identification. , 1990 .

[65]  J. Mahfouf,et al.  Four-Dimensional Variational Assimilation of Total Column Water Vapor in Rainy Areas , 2002 .