Weld modeling and control using artificial neural networks

Artificial neural networks were evaluated for monitoring and control of the variable polarity plasma arc welding (VPPAW) process. Three areas of welding application were investigated: weld process modeling, weld process control, and weld bead profile analysis for quality control. Experiments and analysis confirm that artificial neural networks are powerful tools for analysis, modeling, and control applications. They are particularly attractive in view of their capabilities to process nonlinear and noisy data, learn from actual welding data, and execute at relatively high speed. It is shown that neural networks are capable of modeling parameters of the VPPAW process to on the order of 10% accuracy or better. The same was observed when neural networks were used to select welding equipment parameters and the resulting bead geometries were estimated. These performance figures suggest that a VPPA welding control system can be implemented based on neural network models and control mechanisms. >