Possibilistic bottleneck combinatorial optimization problems with ill-known weights

In this paper a general bottleneck combinatorial optimization problem with uncertain element weights modeled by fuzzy intervals is considered. A possibilistic formalization of the problem and solution concepts in this setting, which lead to compute robust solutions under fuzzy weights, are given. Some algorithms for finding a solution according to the introduced concepts and evaluating optimality of solutions and elements are provided. These algorithms are polynomial for bottleneck combinatorial optimization problems with uncertain element weights, if their deterministic counterparts are polynomially solvable.

[1]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[2]  Masahiro Inuiguchi,et al.  Robust optimization under softness in a fuzzy linear programming problem , 1998, Int. J. Approx. Reason..

[3]  Evdokia Nikolova Stochastic Combinatorial Optimization with Risk , 2008 .

[4]  Daniel Vanderpooten,et al.  Complexity of the min-max and min-max regret assignment problems , 2005, Oper. Res. Lett..

[5]  Adam Kasperski,et al.  On combinatorial optimization problems on matroids with uncertain weights , 2007, Eur. J. Oper. Res..

[6]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[7]  Robert E. Tarjan,et al.  Faster parametric shortest path and minimum-balance algorithms , 1991, Networks.

[8]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[9]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[10]  Igor Averbakh,et al.  Interval data minmax regret network optimization problems , 2004, Discret. Appl. Math..

[11]  Bernard Roy,et al.  Robustness in operational research and decision aiding: A multi-faceted issue , 2010, Eur. J. Oper. Res..

[12]  Raphael Yuster,et al.  Two-phase Algorithms for the Parametric Shortest Path Problem , 2010, STACS.

[13]  D. Dubois,et al.  Possibility theory and data fusion in poorly informed environments , 1994 .

[14]  Igor Averbakh Minmax regret solutions for minimax optimization problems with uncertainty , 2000, Oper. Res. Lett..

[15]  Dan Gusfield,et al.  Parametric Combinatorial Computing and a Problem of Program Module Distribution , 1983, JACM.

[16]  Abraham P. Punnen A fast algorithm for a class of bottleneck problems , 2005, Computing.

[17]  Adam Kasperski,et al.  On possibilistic combinatorial optimization problems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[18]  David Eppstein,et al.  Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..

[19]  Timothy M. Chan Finding the shortest bottleneck edge in a parametric minimum spanning tree , 2005, SODA '05.

[20]  Robert E. Tarjan,et al.  Algorithms for Two Bottleneck Optimization Problems , 1988, J. Algorithms.

[21]  Daniel Vanderpooten,et al.  Min-max and min-max regret versions of combinatorial optimization problems: A survey , 2009, Eur. J. Oper. Res..

[22]  A Gerodimos,et al.  Robust Discrete Optimization and its Applications , 1996, J. Oper. Res. Soc..

[23]  S. Ferson,et al.  Different methods are needed to propagate ignorance and variability , 1996 .

[24]  Hiroaki Ishii,et al.  Stochastic bottleneck spanning tree problem , 1983, Networks.

[25]  Masahiro Inuiguchi On Possibilistic/Fuzzy Optimization , 2007, IFSA.

[26]  Didier Dubois,et al.  Representing partial ignorance , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[27]  Paolo M. Camerini The Min-Max Spanning Tree Problem and Some Extensions , 1978, Inf. Process. Lett..

[28]  Didier Dubois,et al.  A generalized vertex method for computing with fuzzy intervals , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[29]  Patrick Brézillon,et al.  Lecture Notes in Artificial Intelligence , 1999 .

[30]  H. Ishii,et al.  Chance constrained bottleneck spanning tree problem with fuzzy random edge costs , 2000 .

[31]  John M. Wilson,et al.  Introduction to Stochastic Programming , 1998, J. Oper. Res. Soc..

[32]  Didier Dubois,et al.  Fuzzy scheduling: Modelling flexible constraints vs. coping with incomplete knowledge , 2003, Eur. J. Oper. Res..

[33]  Didier Dubois,et al.  On latest starting times and floats in activity networks with ill-known durations , 2003, Eur. J. Oper. Res..

[34]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[35]  Masahiro Inuiguchi,et al.  Approaches to Linear Programming Problems with Interactive Fuzzy Numbers , 2010, Fuzzy Optimization.

[36]  D. Dubois,et al.  When upper probabilities are possibility measures , 1992 .

[37]  Etienne E. Kerre,et al.  Implementation of piecewise linear fuzzy quantities , 1995, Int. J. Intell. Syst..

[38]  Matthew Brand,et al.  Stochastic Shortest Paths Via Quasi-convex Maximization , 2006, ESA.

[39]  Adam Kasperski,et al.  Minmax regret approach and optimality evaluation in combinatorial optimization problems with interval and fuzzy weights , 2010, Eur. J. Oper. Res..

[40]  Abraham P. Punnen A linear time algorithm for the maximum capacity path problem , 1991 .