Electrochemically activated 3D Mn doped NiCo hydroxide electrode materials toward high-performance supercapacitors.

[1]  Wei Liu,et al.  Achieving Ultrahigh Energy‐Density Aqueous Supercapacitors via a Novel Acidic Radical Adsorption Capacity‐Activation Mechanism in Ni(SeO3)/Metal Sulfide Heterostructure , 2023, Small methods.

[2]  Y. Lei,et al.  Hierarchical Design of Cross‐Linked NiCo2S4 Nanowires Bridged NiCo‐Hydrocarbonate Polyhedrons for High‐Performance Asymmetric Supercapacitor , 2022, Advanced Functional Materials.

[3]  Jaephil Cho,et al.  Boosting Hydrogen Evolution Reaction by Phase Engineering and Phosphorus Doping on Ru/P-TiO2. , 2022, Angewandte Chemie.

[4]  Shuangyi Liu,et al.  Tremella-like 2D Nickel-Copper Disulfide with Ultrahigh Capacity and Cyclic Retention for Hybrid Supercapacitors. , 2022, ACS applied materials & interfaces.

[5]  Jinhui Tong,et al.  Defect and Interface Engineering of Templated Synthesis of Hollow Porous Co3o4/Comoo4 with Highly Enhanced Electrocatalytic Activity for Oxygen Evolution Reaction , 2022, SSRN Electronic Journal.

[6]  Xiaodong Hong,et al.  Composition and Morphology Transition of NF/MnP/NiCoP composite electrode Induced by Charge/Discharge Activation , 2022, Chemical Engineering Journal.

[7]  Zhengtang Luo,et al.  Hierarchical Nanocages Assembled by NiCo-Layered Double Hydroxide Nanosheets for a High-Performance Hybrid Supercapacitor. , 2022, ACS applied materials & interfaces.

[8]  J. Razal,et al.  Construction of Cu7KS4@NixCo1-x(OH)2 Nano-Core-Shell Structures with High Conductivity and Multi-Metal Synergistic Effect for Superior Hybrid Supercapacitors. , 2022, ACS applied materials & interfaces.

[9]  Xiaoguang Wang,et al.  Electrochemical-Induced Surface Reconstruction to Nife-Ldhs-Based Heterostructure as Novel Positive Electrode for Supercapacitors with Enhanced Performance in Neutral Electrolyte , 2022, SSRN Electronic Journal.

[10]  H. Che,et al.  Se-doped nickel-cobalt sulfide nanotube arrays with 3D networks for high-performance hybrid supercapacitor , 2022, Ceramics International.

[11]  Qinghua Zhang,et al.  Realizing Two-Electron Transfer in Ni(OH)2 Nanosheets for Energy Storage. , 2022, Journal of the American Chemical Society.

[12]  Xinkun Wang,et al.  MOF-Derived NiZnCo-P Nano-Array for Asymmetric Supercapacitor , 2022, Chemical Engineering Journal.

[13]  A. Olabi,et al.  All Transition Metal Selenide Composed High-Energy Solid-State Hybrid Supercapacitor. , 2022, Small.

[14]  A. Gedanken,et al.  Rhenium Sulfide Incorporated in Molybdenum Sulfide Nanosheets for High-Performance Symmetric Supercapacitors with Enhanced Capacitance. , 2022, ACS applied materials & interfaces.

[15]  Aitang Zhang,et al.  Ternary NiCeCo-Layered Double Hydroxides Grown on CuBr2@ZIF-67 Nanowire Arrays for High-Performance Supercapacitors. , 2022, ACS applied materials & interfaces.

[16]  Jingkun Xu,et al.  Advanced Oxygen‐Vacancy Ce‐Doped MoO3 Ultrathin Nanoflakes Anode Materials Used as Asymmetric Supercapacitors with Ultrahigh Energy Density , 2022, Advanced Energy Materials.

[17]  Yongxin Lu,et al.  Direct Access to NiCo-LDH Nanosheets by Electrochemical-Scanning-Mediated Hydrolysis for Photothermally Enhanced Energy Storage Capacity , 2022, Energy Storage Materials.

[18]  Hyun‐Seok Kim,et al.  Unveiling the Redox Electrochemistry of MOF-Derived fcc-NiCo@GC Polyhedron as an Advanced Electrode Material for Boosting Specific Energy of the Supercapattery. , 2022, Small.

[19]  Akbar Mohammadi Zardkhoshoui,et al.  Fabrication of hollow MnFe2O4 nanocubes assembled by CoS2 nanosheets for hybrid supercapacitors , 2022, Chemical Engineering Journal.

[20]  G. Hu,et al.  [CH3NH3][M(HCOO)3]-Based 2D porous NiCo2S4 nanosheets for high-performance supercapacitors with high power densities , 2022, Chemical Engineering Journal.

[21]  Xinyu Wang,et al.  Microwave-assisted in-situ isomorphism via introduction of Mn into CoCo2O4 for battery-supercapacitor hybrid electrode material , 2022, Chemical Engineering Journal.

[22]  Haiqun Chen,et al.  Hollow nanospheres comprising amorphous NiMoS4 and crystalline NiS2 for all-solid-state supercapacitors , 2022, Chemical Engineering Journal.

[23]  Y. Liu,et al.  Nickel-cobalt (oxy)hydroxide battery-type supercapacitor electrode with high mass loading , 2022, Chemical Engineering Journal.

[24]  Yongfeng Li,et al.  Electrochemical activation induced phase and structure reconstruction to reveal cobalt sulfide intrinsic energy storage capacity , 2022, Chemical Engineering Journal.

[25]  K. Yuan,et al.  From Crystalline to Partially Amorphous: A Facile Strategy toward Sulfur Vacancy‐Enriched CoNi2S4 Nanosheets with Improved Supercapacitor Performance , 2021, Advanced Sustainable Systems.

[26]  Mingyue Chen,et al.  Low-crystalline β-Ni(OH)2 nanosheets on nickel foam with enhanced areal capacitance for supercapacitor applications , 2021 .

[27]  S. Jun,et al.  Realizing Superior Redox Kinetics of Hollow Bimetallic Sulfide Nanoarchitectures by Defect-Induced Manipulation toward Flexible Solid-State Supercapacitors. , 2021, Small.

[28]  J. Ting,et al.  Mn(OH)2-containing Co(OH)2/Ni(OH)2 Core-shelled Structure for Ultrahigh Energy Density Asymmetric Supercapacitor , 2021, Applied Surface Science.

[29]  Liping Huang,et al.  Defect-Engineered NiCo-S Composite as a Bifunctional Electrode for High-Performance Supercapacitor and Electrocatalysis. , 2021, ACS applied materials & interfaces.

[30]  Xifei Li,et al.  3D frame-like architecture of N-C-incorporated mixed metal phosphide boosting ultrahigh energy density pouch-type supercapacitors , 2021, Nano Energy.

[31]  Nageh K. Allam,et al.  Optimized electrosynthesis approach of Manganese-Nickel- Cobalt chalcogenide nanosheet arrays as binder-free battery materials for asymmetric electrochemical supercapacitors , 2021, Electrochimica Acta.

[32]  Chengyu Wang,et al.  Understanding the Feasibility of Manganese Substitution for Cobalt in the Synthesis of Nickel-Rich and Cobalt-Free Cathode Materials , 2021, ACS Applied Energy Materials.

[33]  G. Yin,et al.  Stacking fault disorder induced by Mn doping in Ni(OH)2 for supercapacitor electrodes , 2021 .

[34]  Hao Li,et al.  An electro-activated bimetallic zinc-nickel hydroxide cathode for supercapacitor with super-long 140,000 cycle durability , 2021 .

[35]  I. Obaidat,et al.  Binder-free hierarchical core-shell-like CoMn2O4@MnS nanowire arrays on nickel foam as a battery-type electrode material for high-performance supercapacitors , 2021 .

[36]  Liyuan Wei,et al.  Construction of triple-shelled hollow nanostructure by confining amorphous Ni-Co-S/crystalline MnS on/in hollow carbon nanospheres for all-solid-state hybrid supercapacitors , 2021, Chemical Engineering Journal.

[37]  Mingjiang Xie,et al.  A free-standing Ni–Mn–S@NiCo2S4 core–shell heterostructure on carbon cloth for high-energy flexible supercapacitors , 2021, Electrochimica Acta.

[38]  C. Zhi,et al.  Electrochemically induced NiCoSe2@NiOOH/CoOOH heterostructures as multifunctional cathode materials for flexible hybrid zn batteries , 2021 .

[39]  J. Yu,et al.  High-performance hybrid supercapacitors based on MOF-derived hollow ternary chalcogenides , 2020 .

[40]  S. Jun,et al.  Dual-defect surface engineering of bimetallic sulfide nanotubes towards flexible asymmetric solid-state supercapacitors , 2020 .

[41]  Yongfeng Li,et al.  Self-reconstruction strategy to synthesis of Ni/Co-OOH nanoflowers decorated with N, S co-doped carbon for high-performance energy storage , 2020, Chemical Engineering Journal.

[42]  V. Kale,et al.  Covalent Organic Frameworks as Negative Electrodes for High‐Performance Asymmetric Supercapacitors , 2020, Advanced Energy Materials.

[43]  G. Cao,et al.  NiCo2S4-based nanocomposites for energy storage in supercapacitors and batteries , 2020 .

[44]  Yuxin Zhang,et al.  Synthesis of porous NiCoS nanosheets with Al leaching on ordered mesoporous carbon for high-performance supercapacitors , 2020 .

[45]  W. Pan,et al.  Low-Crystalline FeOOH Nanoflower Assembled Mesoporous Film Anchored on MWCNTs for High-Performance Supercapacitor Electrodes , 2020, ACS omega.

[46]  Haiqun Chen,et al.  Mn-Doped NiMoO4 Mesoporous Nanorods/Reduced Graphene Oxide Composite for High-Performance All-Solid-State Supercapacitor , 2020 .

[47]  M. Oschatz,et al.  Partially delocalized charge in Fe-doped NiCo2S4 nanosheet–mesoporous carbon-composites for high-voltage supercapacitors , 2019, Journal of Materials Chemistry A.

[48]  Yajun Ji,et al.  High mass loading and high-density flower-like NiCo2O4 nanosheets on Ni foam for superior capacitance. , 2019, Chemical communications.

[49]  A. Ramasubramaniam,et al.  Manganese Doping of MoSe2 Promotes Active Defect Sites for Hydrogen Evolution. , 2019, ACS applied materials & interfaces.

[50]  Peixin Zhang,et al.  Confined growth of NiCo2S4 nanosheets on carbon flakes derived from eggplant with enhanced performance for asymmetric supercapacitors , 2019, Chemical Engineering Journal.

[51]  Chang Yu,et al.  A Universal Converse Voltage Process for Triggering Transition Metal Hybrids In Situ Phase Restruction toward Ultrahigh‐Rate Supercapacitors , 2019, Advanced materials.

[52]  Yihe Zhang,et al.  Bimetallic NiCo2S4 Nanoneedles Anchored on Mesocarbon Microbeads as Advanced Electrodes for Asymmetric Supercapacitors , 2019, Nano-micro letters.

[53]  Jinping Liu,et al.  Definitions of Pseudocapacitive Materials: A Brief Review , 2019, ENERGY & ENVIRONMENTAL MATERIALS.

[54]  X. Zhao,et al.  Synthesis of amorphous nickel–cobalt–manganese hydroxides for supercapacitor-battery hybrid energy storage system , 2019, Energy Storage Materials.

[55]  Q. Jiang,et al.  Sheet-membrane Mn-doped nickel hydroxide encapsulated via heterogeneous Ni3S2 nanoparticles for efficient alkaline battery–supercapacitor hybrid devices , 2018 .

[56]  Yanyong Wang,et al.  Recent Progress on Layered Double Hydroxides and Their Derivatives for Electrocatalytic Water Splitting , 2018, Advanced science.

[57]  Lei Zhang,et al.  Rational Design of Nickel Hydroxide‐Based Nanocrystals on Graphene for Ultrafast Energy Storage , 2018 .

[58]  T. Zhai,et al.  Ultrathin and Porous Ni3S2/CoNi2S4 3D‐Network Structure for Superhigh Energy Density Asymmetric Supercapacitors , 2017 .

[59]  Kaili Zhang,et al.  Hybrid Reduced Graphene Oxide Nanosheet Supported Mn-Ni-Co Ternary Oxides for Aqueous Asymmetric Supercapacitors. , 2017, ACS applied materials & interfaces.

[60]  D. He,et al.  Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors , 2017 .

[61]  Yang Li,et al.  Fe2O3 Nanoneedles on Ultrafine Nickel Nanotube Arrays as Efficient Anode for High‐Performance Asymmetric Supercapacitors , 2017 .

[62]  Y. Bando,et al.  In situ electrochemical formation of core–shell nickel–iron disulfide and oxyhydroxide heterostructured catalysts for a stable oxygen evolution reaction and the associated mechanisms , 2017 .

[63]  X. Lou,et al.  Formation of Onion‐Like NiCo2S4 Particles via Sequential Ion‐Exchange for Hybrid Supercapacitors , 2017, Advanced materials.

[64]  B. D. Boruah,et al.  A flexible ternary oxide based solid-state supercapacitor with excellent rate capability , 2016 .

[65]  Peng Sun,et al.  In situ growth of binder-free CNTs@Ni–Co–S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors , 2016 .

[66]  Juan-Yu Yang,et al.  Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors , 2016 .

[67]  Pooi See Lee,et al.  Metal Organic Framework‐Derived Metal Phosphates as Electrode Materials for Supercapacitors , 2016 .

[68]  Chengxin Wang,et al.  A Simple Electrochemical Route to Access Amorphous Mixed‐Metal Hydroxides for Supercapacitor Electrode Materials , 2015 .

[69]  Wei Hu,et al.  CoNi(2)S(4) nanosheet arrays supported on nickel foams with ultrahigh capacitance for aqueous asymmetric supercapacitor applications. , 2014, ACS applied materials & interfaces.

[70]  Jianjun Jiang,et al.  Highly conductive NiCo₂S₄ urchin-like nanostructures for high-rate pseudocapacitors. , 2013, Nanoscale.

[71]  Xiaogang Zhang,et al.  Electrochemically induced transformation of NiS nanoparticles into Ni(OH)2 in KOH aqueous solution toward electrochemical capacitors , 2011 .

[72]  H. Zeng,et al.  3D hierarchical core-shell structural NiCoMoS@ NiCoAl hydrotalcite for high-performance supercapacitors , 2022, Journal of Materials Chemistry A.

[73]  Z. Tian,et al.  Self-supported nickel iron selenide@nickel cobalt boride core-shell nanosheets electrode for asymmetric supercapacitors , 2022, Chemical Engineering Journal.

[74]  Mengjie Liu,et al.  Co9S8@MnO2 core–shell defective heterostructure for High-Voltage flexible supercapacitor and Zn-ion hybrid supercapacitor , 2022, Chemical Engineering Journal.

[75]  S. Zhai,et al.  Nickel-cobalt bimetallic tungstate decorated 3D hierarchical porous carbon derived from lignin for high-performance supercapacitor applications , 2022, Journal of Materials Chemistry A.

[76]  J. Razal,et al.  In situ embedding of cobalt sulfide quantum dots among transition metal layered double hydroxides for high performance all-solid-state asymmetric supercapacitors , 2021, Journal of Materials Chemistry A.

[77]  Fei Chen,et al.  Sponge-like NiCo2S4 nanosheets supported on nickel foam as high-performance electrode materials for asymmetric supercapacitors , 2020 .

[78]  Y. Gong,et al.  Epitaxial grown self-supporting NiSe/Ni3S2/Ni12P5 vertical nanofiber arrays on Ni foam for high performance supercapacitor: Matched exposed facets and re-distribution of electron density , 2019, Nano Energy.

[79]  B. Wei,et al.  Controlled synthesis of NiCo2S4 nanostructures on nickel foams for high-performance supercapacitors , 2016 .

[80]  Qiming Liu,et al.  Metal-organic framework derived hollow rod-like NiCoMn ternary metal sulfide for high-performance asymmetric supercapacitors , 2022 .