Bayesian inference for finite mixtures of generalized linear models with random effects
暂无分享,去创建一个
[1] N. Breslow,et al. Approximate inference in generalized linear mixed models , 1993 .
[2] S. Chib. Marginal Likelihood from the Gibbs Output , 1995 .
[3] R. Luce,et al. Individual Choice Behavior: A Theoretical Analysis. , 1960 .
[4] J. B. Ramsey,et al. Estimating Mixtures of Normal Distributions and Switching Regressions , 1978 .
[5] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[6] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[7] R. Duncan Luce,et al. Individual Choice Behavior: A Theoretical Analysis , 1979 .
[8] P. Damlen,et al. Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .
[9] C. Robert,et al. Estimation of Finite Mixture Distributions Through Bayesian Sampling , 1994 .
[10] Greg M. Allenby,et al. On the Heterogeneity of Demand , 1998 .
[11] K. Pearson. Contributions to the Mathematical Theory of Evolution , 1894 .
[12] Geoffrey J. McLachlan,et al. FITTING FINITE MIXTURE MODELS IN A REGRESSION CONTEXT , 1992 .
[13] Michel Wedel,et al. A Latent Class Poisson Regression Model for Heterogeneous Count Data , 1993 .
[14] T. Lwin,et al. Probits of mixtures. , 1989, Biometrics.
[15] L. Wasserman,et al. Computing Bayes Factors by Combining Simulation and Asymptotic Approximations , 1997 .
[16] David David. Maximum likelihood estimates of the parameters of a mixture of two regression lines , 1974 .
[17] R. Quandt. A New Approach to Estimating Switching Regressions , 1972 .
[18] Gary J. Russell,et al. A Probabilistic Choice Model for Market Segmentation and Elasticity Structure , 1989 .
[19] H. Bozdogan. Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .
[20] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[21] W. DeSarbo,et al. An Empirical Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data , 1993 .
[22] Adrian F. M. Smith,et al. Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .
[23] Charles J. Geyer,et al. Practical Markov Chain Monte Carlo , 1992 .
[24] A. Raftery,et al. Estimating Bayes Factors via Posterior Simulation with the Laplace—Metropolis Estimator , 1997 .
[25] A. Cohen,et al. Finite Mixture Distributions , 1982 .
[26] S. R. Searle. Linear Models , 1971 .
[27] A. Gelfand,et al. Bayesian Model Choice: Asymptotics and Exact Calculations , 1994 .
[28] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[29] Wagner A. Kamakura,et al. Estimating flexible distributions of ideal-points with external analysis of preferences , 1991 .
[30] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[31] P. Lenk,et al. Hierarchical Bayes Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs , 1996 .
[32] Nicholas G. Polson,et al. On the Geometric Convergence of the Gibbs Sampler , 1994 .
[33] Andrew L. Rukhin,et al. Tools for statistical inference , 1991 .
[34] Scott L. Zeger,et al. Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .
[35] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[36] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[37] H. Jeffreys,et al. Theory of probability , 1896 .
[38] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[39] Wayne S. DeSarbo,et al. A latent class probit model for analyzing pick any/N data , 1991 .
[40] Michel Wedel,et al. Latent class metric conjoint analysis , 1992 .
[41] S. Newcomb. A Generalized Theory of the Combination of Observations so as to Obtain the Best Result , 1886 .
[42] Wayne S. DeSarbo,et al. A Latent Class Binomial Logit Methodology for the Analysis of Paired Comparison Choice Data: An Application Reinvestigating the Determinants of Perceived Risk , 1993 .
[43] S. Chib,et al. Bayesian analysis of binary and polychotomous response data , 1993 .
[44] W. DeSarbo,et al. A maximum likelihood methodology for clusterwise linear regression , 1988 .
[45] M. Puterman,et al. Mixed Poisson regression models with covariate dependent rates. , 1996, Biometrics.
[46] B. Carlin,et al. Bayesian Model Choice Via Markov Chain Monte Carlo Methods , 1995 .
[47] L. Wasserman,et al. Computing Bayes Factors Using a Generalization of the Savage-Dickey Density Ratio , 1995 .
[48] D. McFadden. Conditional logit analysis of qualitative choice behavior , 1972 .
[49] W. DeSarbo,et al. A mixture likelihood approach for generalized linear models , 1995 .
[50] L. A. Goodman. Exploratory latent structure analysis using both identifiable and unidentifiable models , 1974 .
[51] Martin L. Puterman,et al. Mixed logistic regression models , 1998 .
[52] Martin L. Puterman,et al. Analysis of Patent Data—A Mixed-Poisson-Regression-Model Approach , 1998 .
[53] D. Hosmer. Estimating Mixtures of Normal Distributions and Switching Regressions: Comment , 1978 .
[54] Alison L. Gibbs,et al. Convergence of Markov chain Monte Carlo algorithms with applications to image restoration , 2000 .