An apropos kinematic framework for the numerical modeling of friction stir welding

This paper describes features of a fully coupled thermo-mechanical model for Friction Stir Welding (FSW) simulation. An apropos kinematic setting for different zones of the computational domain is introduced and an efficient coupling strategy is proposed. Heat generation via viscous dissipation as well as frictional heating is considered. The results of the simulation using the proposed model are compared with the experimental evidence. The effect of slip and stick condition on non-circular pin shapes is analyzed. Simulation of material stirring is also carried out via particle tracing, providing insight of the material flow pattern in the vicinity of the pin.

[1]  L. D. Filippis,et al.  Effect of shoulder geometry on residual stress and fatigue properties of AA6082 fsw joints , 2009 .

[2]  T. Gnäupel-Herold,et al.  Residual stress measurements in a thick, dissimilar aluminum alloy friction stir weld , 2006 .

[3]  Lionel Fourment,et al.  Friction model for friction stir welding process simulation: Calibrations from welding experiments , 2010 .

[4]  Miguel Cervera,et al.  THERMO-MECHANICAL ANALYSIS OF INDUSTRIAL SOLIDIFICATION PROCESSES , 1999 .

[5]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[6]  Livan Fratini,et al.  Numerical procedure for residual stresses prediction in friction stir welding , 2011 .

[7]  C. A. Saracibar,et al.  Mixed linear/linear simplicial elements for incompressible elasticity and plasticity , 2003 .

[8]  A. Reynolds,et al.  Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique , 2001 .

[9]  Miguel Cervera,et al.  On the formulation of coupled thermoplastic problems with phase-change , 1999 .

[10]  Livan Fratini,et al.  Design of the friction stir welding tool using the continuum based FEM model , 2006 .

[11]  Thomas J. Lienert,et al.  Three-dimensional heat and material flow during friction stir welding of mild steel , 2007 .

[12]  V. Dattoma,et al.  On the Residual Stress Field in the Aluminium Alloy FSW Joints , 2009 .

[13]  Jean-Loup Chenot,et al.  Finite element modelling and control of new metal forming processes , 2006 .

[14]  Miguel Cervera,et al.  On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity , 2006 .

[15]  Thomas J. Lienert,et al.  Numerical modelling of 3D plastic flow and heat transfer during friction stir welding of stainless steel , 2006 .

[16]  R Kovacevic,et al.  Thermomechanical modelling and force analysis of friction stir welding by the finite element method , 2004 .

[17]  Simon Guerdoux,et al.  Numerical simulation of the friction stir welding process , 2004 .

[18]  S. Guerdoux,et al.  A 3D numerical simulation of different phases of friction stir welding , 2009 .

[19]  P. Dawson,et al.  Modeling strain hardening and texture evolution in friction stir welding of stainless steel , 2005 .

[20]  C. A. Saracibar,et al.  A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations , 2002 .

[21]  N. J. Hoff,et al.  Approximate analysis of structures in the presence of moderately large creep deformations , 1954 .

[22]  Miguel Cervera,et al.  A stabilized formulation for incompressible plasticity using linear triangles and tetrahedra , 2004 .

[23]  Livan Fratini,et al.  A continuum based fem model for friction stir welding—model development , 2006 .

[24]  Patrick Ulysse,et al.  Three-dimensional modeling of the friction stir-welding process , 2002 .