Wavelet applications to the Petrov--Galerkin method for Hammerstein equations
暂无分享,去创建一个
[1] Yuesheng Xu,et al. Fast Collocation Methods for Second Kind Integral Equations , 2002, SIAM J. Numer. Anal..
[2] E. Atkinson. THE NUMERICAL SOLUTION OF ANONLINEAR BOUNDARY INTEGRALEQUATION ON SMOOTH SURFACESKendall , 1994 .
[3] K. Atkinson. The Numerical Solution of Integral Equations of the Second Kind , 1997 .
[4] Kendall E. Atkinson,et al. The numerical solution of a non-linear boundary integral equation on smooth surfaces , 1994 .
[5] Hideaki Kaneko,et al. Superconvergence of the iterated Galerkin methods for Hammerstein equations , 1996 .
[6] G. M. Vainikko. Galerkin's perturbation method and the general theory of approximate methods for non-linear equations☆ , 1967 .
[7] Reinhold Schneider,et al. Multiwavelets for Second-Kind Integral Equations , 1997 .
[8] Yuesheng Xu,et al. The Petrov–Galerkin method for second kind integral equations II: multiwavelet schemes , 1997, Adv. Comput. Math..
[9] Zhongying Chen,et al. The Petrov--Galerkin and Iterated Petrov--Galerkin Methods for Second-Kind Integral Equations , 1998 .
[10] Hideaki Kaneko,et al. Superconvergence of the iterated collocation methods for Hammerstein equations , 1997 .
[11] B. Alpert. A class of bases in L 2 for the sparse representations of integral operators , 1993 .
[12] L. Delves,et al. Computational methods for integral equations: Frontmatter , 1985 .
[13] Christoph Schwab,et al. Wavelet approximations for first kind boundary integral equations on polygons , 1996 .
[14] K AlpertBradley. A class of bases in L2 for the sparse representations of integral operators , 1993 .
[15] Ian H. Sloan,et al. A new collocation-type method for Hammerstein integral equations , 1987 .
[16] C. Micchelli,et al. Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets , 1994 .