Comparison of the wake recovery of the axial-flow and cross-flow turbine concepts

Abstract A detailed wake analysis of two different turbine concepts is conducted to gain a fundamental understanding of the main energy recovery processes at play in each case. An axial-flow turbine and a cross-flow turbine are considered. Both operate near their respective optimal efficiency conditions in a uniform oncoming flow and at a Reynolds number of 10 7 . Three-dimensional Delayed Detached-Eddy Simulations (DDES) are carried out and the time-averaged Unsteady Reynolds-averaged Navier–Stokes (URANS) equations are used as a post-processing tool in order to assess the importance of the various contributions affecting the wake recovery quantitatively. It is found that the dominant mechanism is fundamentally different between the two turbine technologies. Indeed, while the axial-flow turbine's wake is strongly influenced by an instability phenomenon leading to a significant turbulent transport, the cross-flow turbine's wake recovery is found to be much more related to the mean spanwise velocity field. As a result, unlike the axial-flow turbine's wake dynamics which is highly dependent on the turbulent characteristics of the oncoming flow, the cross-flow turbine's wake is expected to be less sensitive to these turbulent characteristics but highly dependent on the geometric characteristics of the turbine such as the turbine's aspect ratio.

[1]  I. Owen,et al.  Near-wake characteristics of a model horizontal axis tidal stream turbine , 2014 .

[2]  Fernando Porté-Agel,et al.  Large Eddy Simulation of Vertical Axis Wind Turbine Wakes , 2014 .

[3]  Ervin Bossanyi,et al.  Wind Energy Handbook , 2001 .

[4]  D. Ragni,et al.  Near wake flow analysis of a vertical axis wind turbine by stereoscopic particle image velocimetry , 2014 .

[5]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[6]  Fotis Sotiropoulos,et al.  Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine , 2012 .

[7]  Peter Bachant,et al.  Performance and Near-Wake Measurements for a Vertical Axis Turbine at Moderate Reynolds Number , 2013 .

[8]  Carlos Simao Ferreira,et al.  2D PIV Visualization of Dynamic Stall on a Vertical Axis Wind Turbine , 2007 .

[9]  J. Dabiri,et al.  Three-dimensional flow field around and downstream of a subscale model rotating vertical axis wind turbine , 2016 .

[10]  Sander M. Calisal,et al.  Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine , 2010 .

[11]  Christopher L. Rumsey,et al.  Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations , 2007 .

[12]  F. Scarano,et al.  3D Stereo PIV study of tip vortex evolution on a vawt , 2008 .

[13]  Carlos Simao Ferreira,et al.  Wind tunnel hotwire measurements, flow visualization and thrust measurement of a VAWT in skew , 2006 .

[14]  Young-Ho Lee,et al.  Large eddy simulation of the wind turbine wake characteristics in the numerical wind tunnel model , 2013 .

[15]  L. Chamorro,et al.  Reynolds number dependence of turbulence statistics in the wake of wind turbines , 2012 .

[16]  Guy Dumas,et al.  Parametric study of H-Darrieus vertical-axis turbines using CFD simulations , 2016 .

[17]  Charles Meneveau,et al.  Experimental study of the kinetic energy budget in a wind turbine streamtube , 2011 .

[18]  Reza S. Abhari,et al.  Mitigating adverse wake effects in a wind farm using non-optimum operational conditions , 2016 .

[19]  P. Spalart,et al.  A New Version of Detached-eddy Simulation, Resistant to Ambiguous Grid Densities , 2006 .

[20]  Lucas I. Lago,et al.  Advances and trends in hydrokinetic turbine systems , 2010 .

[21]  Fernando Porté-Agel,et al.  Large-eddy simulation of atmospheric boundary layer flow through wind turbines and wind farms , 2011 .

[22]  Seung-Jae Lee,et al.  Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine , 2013 .

[23]  J. Sørensen,et al.  Wind turbine wake aerodynamics , 2003 .

[24]  F. Menter Two-equation eddy-viscosity turbulence models for engineering applications , 1994 .

[25]  F. Porté-Agel,et al.  Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study , 2012 .

[26]  M. Wosnik,et al.  Effects of Reynolds Number on the Energy Conversion and Near-Wake Dynamics of a High Solidity Vertical-Axis Cross-Flow Turbine , 2016 .

[27]  C. Meneveau,et al.  Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer , 2009 .

[28]  R. Camussi,et al.  Mechanisms of evolution of the propeller wake in the transition and far fields , 2011, Journal of Fluid Mechanics.

[29]  Fernando Porté-Agel,et al.  Mean and turbulent kinetic energy budgets inside and above very large wind farms under conventionally-neutral condition , 2014 .

[30]  Philippe R. Spalart,et al.  Detached-eddy simulation of an airfoil at high angle of attack , 1999 .

[31]  P. Spalart,et al.  Physical and Numerical Upgrades in the Detached-Eddy Simulation of Complex Turbulent Flows , 2002 .

[32]  Dochan Kwak,et al.  On numerical errors and turbulence modeling in tip vortex flow prediction , 1999 .

[33]  Richard E. Brown,et al.  Simulating the aerodynamic performance and wake dynamics of a vertical‐axis wind turbine , 2011 .

[34]  D. Ragni,et al.  Experimental analysis of the wake of a horizontal-axis wind-turbine model , 2014 .

[35]  G. Persico,et al.  Aerodynamic Measurements on a Vertical Axis Wind Turbine in a Large Scale Wind Tunnel , 2011 .

[36]  P. Spalart Strategies for turbulence modelling and simulations , 2000 .

[37]  G. Dumas,et al.  Three-Dimensional Effects on an Oscillating-Foil Hydrokinetic Turbine , 2012 .

[38]  Fotis Sotiropoulos,et al.  On the evolution of turbulent scales in the wake of a wind turbine model , 2012 .

[39]  F. Porté-Agel,et al.  A new analytical model for wind-turbine wakes , 2013 .

[40]  Donald A. Drew,et al.  Pseudo spectral analysis of the energy entrainment in a scaled down wind farm , 2014 .

[41]  L. Chamorro,et al.  On the interaction between a turbulent open channel flow and an axial-flow turbine , 2013, Journal of Fluid Mechanics.

[42]  G. Dumas,et al.  Computational Fluid Dynamics Analysis of a Hydrokinetic Turbine Based on Oscillating Hydrofoils , 2012 .

[43]  Charles Meneveau,et al.  Flow Structure and Turbulence in Wind Farms , 2017 .

[44]  Hester Bijl,et al.  Large Eddy Simulation of wind farm aerodynamics : a review , 2014 .

[45]  G.A.M. van Kuik,et al.  3D wake dynamics of the VAWT: experimental and numerical investigation , 2010 .

[46]  F. Porté-Agel,et al.  A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects , 2009 .

[47]  Chia-Ren Chu,et al.  Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine , 2014 .

[48]  G.A.M. van Kuik,et al.  A 3d unsteady panel method for vertical axis wind turbines , 2008 .

[49]  P. Spalart A One-Equation Turbulence Model for Aerodynamic Flows , 1992 .

[50]  Charles Meneveau,et al.  Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer , 2012 .

[51]  H. Blackburn,et al.  The interaction of helical tip and root vortices in a wind turbine wake , 2013 .

[52]  Paul Mycek,et al.  Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine , 2014 .

[53]  John O. Dabiri,et al.  Turbulence in vertical axis wind turbine canopies , 2015 .

[54]  L. Chamorro,et al.  Turbulent Flow Properties Around a Staggered Wind Farm , 2011 .

[55]  Pierre-Elouan Réthoré,et al.  Wind Turbine Wake in Atmospheric Turbulence , 2009 .

[56]  John O. Dabiri,et al.  Energy exchange in an array of vertical-axis wind turbines , 2012 .

[57]  R. Verzicco,et al.  Modeling of vortex dynamics in the wake of a marine propeller , 2013 .

[58]  J. Sørensen Aerodynamic Aspects of Wind Energy Conversion , 2011 .

[59]  R Spalart Philippe,et al.  Young-Person''s Guide to Detached-Eddy Simulation Grids , 2001 .

[60]  G. Dumas,et al.  Impact of channel blockage on the performance of axial and cross-flow hydrokinetic turbines , 2017 .

[61]  Fabien Harambat,et al.  Influence of afterbody rounding on the pressure distribution over a fastback vehicle , 2016 .

[62]  C. Meneveau,et al.  Large eddy simulation study of fully developed wind-turbine array boundary layers , 2010 .

[63]  Ali M. Abdelsalam,et al.  Modeling of wind turbine wakes under thermally-stratified atmospheric boundary layer , 2017 .

[64]  J. Dacles-Mariani,et al.  Numerical/experimental study of a wingtip vortex in the near field , 1995 .

[65]  Henrik Alfredsson,et al.  Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding , 2006 .

[66]  Nasir Hayat,et al.  Vertical axis wind turbine – A review of various configurations and design techniques , 2012 .

[67]  C. Meneveau,et al.  Large eddy simulation study of the kinetic energy entrainment by energetic turbulent flow structures in large wind farms , 2014 .

[68]  Frank Thiele,et al.  Analysis of Detached-Eddy Simulation for the Flow Around a Circular Cylinder with Reference to PIV Data , 2010 .

[69]  Heung-Fai Lam,et al.  Investigation into the wake aerodynamics of a five-straight-bladed vertical axis wind turbine by wind tunnel tests , 2016 .

[70]  Stefan Kern,et al.  Large Eddy Simulation of Wind Turbine Wakes , 2013 .

[71]  John O. Dabiri Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays , 2010 .

[72]  B. Koren,et al.  Review of computational fluid dynamics for wind turbine wake aerodynamics , 2011 .

[73]  M. Wosnik,et al.  Characterising the near-wake of a cross-flow turbine , 2015 .

[74]  Hui Hu,et al.  Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind , 2012 .

[75]  P. Fraunié,et al.  Water channel experiments of dynamic stall on Darrieus wind turbine blades , 1986 .

[76]  P. Spalart Detached-Eddy Simulation , 2009 .

[77]  F. Porté-Agel,et al.  Near-wake flow structure downwind of a wind turbine in a turbulent boundary layer , 2011, Experiments in Fluids.

[78]  C. Meneveau,et al.  Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms , 2012, Journal of Fluid Mechanics.

[79]  F. Scarano,et al.  Visualization by PIV of dynamic stall on a vertical axis wind turbine , 2009 .

[80]  Paul Mycek,et al.  Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part II: Two interacting turbines , 2014 .

[81]  F. Porté-Agel,et al.  Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study , 2010 .

[82]  I. Paraschivoiu Wind turbine design with emphasis on Darrieus concept [ressource électronique] / Ion Paraschivoiu , 2002 .