Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs: Application to Real‐Time Bayesian Parameter Estimation

In this paper we consider reduced basis approximation and a posteriori error estimation for linear functional outputs of affinely parametrized linear and non-linear parabolic partial differential equations. The essential ingredients are Galerkin projection onto a low-dimensional space associated with a smooth ``parametric manifold'' --- dimension reduction; efficient and effective Greedy and POD-Greedy sampling methods for identification of optimal and numerically stable approximations --- rapid convergence; rigorous and sharp a posteriori error bounds (and associated stability factors) for the linear-functional outputs of interest --- certainty; and Offline-Online computational decomposition strategies --- minimum marginal cost for high performance in the real-time/embedded (e.g., parameter estimation, control) and many-query (e.g., design optimization, uncertainty quantification, multi- scale) contexts. In this paper we first present reduced basis approximation and a posteriori error estimation for general linear parabolic equations and subsequently for a nonlinear parabolic equation, the incompressible Navier-- Stokes equations. We then present results for the application of our (parabolic) reduced basis methods to Bayesian parameter estimation: detection and characterization of a delamination crack by transient thermal analysis.

[1]  Anthony T. Patera,et al.  A Certified Reduced Basis Method for the Fokker--Planck Equation of Dilute Polymeric Fluids: FENE Dumbbells in Extensional Flow , 2010, SIAM J. Sci. Comput..

[2]  Anthony T. Patera,et al.  A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable Robin coefficient , 2009 .

[3]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[4]  Charbel Farhat,et al.  On-Demand CFD-Based Aeroelastic Predictions Using a Database of Reduced-Order Bases and Models , 2009 .

[5]  Ngoc Cuong Nguyen,et al.  A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales , 2008, J. Comput. Phys..

[6]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[7]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[8]  C. Farhat,et al.  Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity , 2008 .

[9]  Simone Deparis,et al.  Reduced Basis Error Bound Computation of Parameter-Dependent Navier-Stokes Equations by the Natural Norm Approach , 2008, SIAM J. Numer. Anal..

[10]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[11]  S. Boyaval Reduced-Basis Approach for Homogenization beyond the Periodic Setting , 2007, Multiscale Model. Simul..

[12]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[13]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[14]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[15]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[16]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[17]  Anthony T. Patera,et al.  10. Certified Rapid Solution of Partial Differential Equations for Real-Time Parameter Estimation and Optimization , 2007 .

[18]  Anthony T. Patera,et al.  "Natural norm" a posteriori error estimators for reduced basis approximations , 2006, J. Comput. Phys..

[19]  Einar M. Rønquist,et al.  Reduced-basis modeling of turbulent plane channel flow , 2006 .

[20]  Bernard Haasdonk,et al.  Reduced Basis Method for Finite Volume Approximations of Parametrized Evolution Equations , 2006 .

[21]  George Shu Heng Pau,et al.  Feasibility and Competitiveness of a Reduced Basis Approach for Rapid Electronic Structure Calculations in Quantum Chemistry , 2006 .

[22]  Pavel B. Bochev,et al.  LEAST SQUARES FINITE ELEMENT METHODS FOR VISCOUS , INCOMPRESSIBLE FLOWS , 2006 .

[23]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[24]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[25]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[26]  Nguyen Ngoc Cuong,et al.  Certified Real-Time Solution of Parametrized Partial Differential Equations , 2005 .

[27]  M. Hinze,et al.  Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control , 2005 .

[28]  Nicholas Zabaras,et al.  Using Bayesian statistics in the estimation of heat source in radiation , 2005 .

[29]  Nicholas Zabaras,et al.  Hierarchical Bayesian models for inverse problems in heat conduction , 2005 .

[30]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[31]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[32]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[33]  N. Carino,et al.  Infrared Thermography for Nondestructive Evaluation of Fiber Reinforced Polymer Composites Bonded to Concrete | NIST , 2003 .

[34]  Anthony T. Patera,et al.  A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations , 2002, J. Sci. Comput..

[35]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[36]  Stefan Volkwein,et al.  Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics , 2002, SIAM J. Numer. Anal..

[37]  M. A. Starnes Development of technical bases for using infrared thermography for nondestructive evaluation of fiber reinforced polymer composites bonded to concrete , 2002 .

[38]  Albert Tarantola,et al.  Probabilistic Approach to Inverse Problems , 2002 .

[39]  K. ITO,et al.  Reduced Basis Method for Optimal Control of Unsteady Viscous Flows , 2001 .

[40]  D. Rovas,et al.  Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems , 2000 .

[41]  Michael B. Giles,et al.  Adjoint Recovery of Superconvergent Functionals from PDE Approximations , 2000, SIAM Rev..

[42]  J. Sørensen,et al.  Evaluation of POD-based decomposition techniques applied to parameter-dependent non-turbulent flows , 2000 .

[43]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[44]  K. Kunisch,et al.  Control of the Burgers Equation by a Reduced-Order Approach Using Proper Orthogonal Decomposition , 1999 .

[45]  S. Ravindran,et al.  A Reduced-Order Method for Simulation and Control of Fluid Flows , 1998 .

[46]  S. Ravindran,et al.  A Reduced Basis Method for Control Problems Governed by PDEs , 1998 .

[47]  Etienne Balmes,et al.  PARAMETRIC FAMILIES OF REDUCED FINITE ELEMENT MODELS. THEORY AND APPLICATIONS , 1996 .

[48]  Claes Johnson,et al.  Numerics and hydrodynamic stability: toward error control in computational fluid dynamics , 1995 .

[49]  I. Kevrekidis,et al.  Low‐dimensional models for complex geometry flows: Application to grooved channels and circular cylinders , 1991 .

[50]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[51]  B. Mikic,et al.  Minimum-dissipation transport enhancement by flow destabilization: Reynolds’ analogy revisited , 1988, Journal of Fluid Mechanics.

[52]  T. A. Porsching,et al.  Estimation of the error in the reduced basis method solution of nonlinear equations , 1985 .

[53]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[54]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1979 .

[55]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[56]  D. Joseph,et al.  Stability of fluid motions. I, II , 1976 .

[57]  Daniel D. Joseph,et al.  Stability of fluid motions , 1976 .