Invariant measures and their properties. A functional analytic point of view

In this series of lectures I try to illustrate systematically what I call the ``functional analytic approach'' to the study of the statistical properties of Dynamical Systems. The ideas are presented via a series of examples of increasing complexity, hoping to give in this way a feeling of the breadth of the method.

[1]  Mark Pollicott,et al.  Exponential mixing for the geodesic flow on hyperbolic three-manifolds , 1992 .

[2]  Benjamin Weiss,et al.  Geodesic flows are Bernoullian , 1973 .

[3]  Y. Sinai,et al.  SOME SMOOTH ERGODIC SYSTEMS , 1967 .

[4]  S. Ulam Problems in modern mathematics , 1964 .

[5]  Wang Statistical physics of temporal intermittency. , 1989, Physical review. A, General physics.

[6]  M. Thaler Estimates of the invariant densities of endomorphisms with indifferent fixed points , 1980 .

[7]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: Low-dimensional phenomena , 1995 .

[8]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[9]  Huyi Hu,et al.  Decay of correlations for piecewise smooth maps with indifferent fixed points , 2004, Ergodic Theory and Dynamical Systems.

[10]  R. Mañé,et al.  Ergodic Theory and Differentiable Dynamics , 1986 .

[11]  L. Evans Measure theory and fine properties of functions , 1992 .

[12]  Calvin C. Moore,et al.  Exponential Decay of Correlation Coefficients for Geodesic Flows , 1987 .

[13]  N. Chernov Markov approximations and decay of correlations for Anosov flows , 1998 .

[14]  Véronique Maume-Deschamps,et al.  Lasota–Yorke maps with holes: conditionally invariant probability measures and invariant probability measures on the survivor set , 2003 .

[15]  Dmitry Dolgopyat,et al.  Prevalence of rapid mixing—II: topological prevalence , 2000, Ergodic Theory and Dynamical Systems.

[16]  Marina Ratner,et al.  The rate of mixing for geodesic and horocycle flows , 1987, Ergodic Theory and Dynamical Systems.

[17]  J. Bricmont,et al.  Coupled analytic maps , 1994, chao-dyn/9406008.

[18]  Michael Blank,et al.  Small perturbations of chaotic dynamical systems , 1989 .

[19]  Leonid A. Bunimovich,et al.  Spacetime chaos in coupled map lattices , 1988 .

[20]  Carlangelo Liverani,et al.  Rigorous numerical investigation of the statistical properties of piecewise expanding maps - A feasi , 2001 .

[21]  J. Bricmont,et al.  High temperature expansions and dynamical systems , 1995 .

[22]  R. Nussbaum The radius of the essential spectrum , 1970 .

[23]  Gerhard Keller,et al.  Ruelle?Perron?Frobenius spectrum for Anosov maps , 2002 .

[24]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[25]  Lai-Sang Young,et al.  Computing invariant measures for expanding circle maps , 1998 .

[26]  V. Baladi Positive transfer operators and decay of correlations , 2000 .

[27]  Tosio Kato Perturbation theory for linear operators , 1966 .

[28]  Gerhard Keller,et al.  Stochastic stability in some chaotic dynamical systems , 1982 .

[29]  Michiko Yuri,et al.  Decay of correlations for certain multi-dimensional maps , 1996 .

[30]  G. Keller,et al.  Transfer operators for coupled map lattices , 1992, Ergodic Theory and Dynamical Systems.

[31]  J. Yorke,et al.  On the existence of invariant measures for piecewise monotonic transformations , 1973 .

[32]  V. Baladi,et al.  Floquet Spectrum of Weakly Coupled Map Lattices , 2001 .

[33]  Dmitry Dolgopyat,et al.  On differentiability of SRB states for partially hyperbolic systems , 2004 .

[34]  Pierre Collet,et al.  Perturbations of geodesic flows on surface of constant negative curvature and their mixing properties , 1984 .

[35]  C. Liverani On contact Anosov flows , 2004 .

[36]  Chichia Chiu,et al.  Error estimates of the Markov finite approximation of the Frobenius-Perron operator , 1992 .

[37]  S. Vaienti,et al.  Statistical properties of a nonuniformly hyperbolic map of the interval , 1993 .

[38]  P. Gaspard,et al.  Sporadicity: Between periodic and chaotic dynamical behaviors. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Boris Hasselblatt,et al.  Regularity of the Anosov splitting and of horospheric foliations , 1994, Ergodic Theory and Dynamical Systems.

[40]  Hubert Hennion,et al.  Sur un théorème spectral et son application aux noyaux lipchitziens , 1993 .

[41]  G. Froyland Computer-Assisted Bounds for the Rate of Decay of Correlations , 1997 .

[42]  David Ruelle,et al.  Differentiation of SRB States: Correction and Complements , 2003 .

[43]  Gerhard Keller,et al.  On the rate of convergence to equilibrium in one-dimensional systems , 1984 .

[44]  Y. Kifer Random Perturbations of Dynamical Systems , 1988 .

[45]  D. Ruelle Locating resonances for AxiomA dynamical systems , 1986 .

[46]  D. Ruelle Differentiation of SRB States , 1997 .

[47]  C. Liverani Decay of correlations for piecewise expanding maps , 1995 .

[48]  Walter M. Miller Stability and approximation of invariant measures for a class of nonexpanding transformations , 1994 .

[49]  Gerhard Keller,et al.  Stability of the spectrum for transfer operators , 1999 .

[50]  Gerhard Keller,et al.  Stochastic stability versus localization in one-dimensional chaotic dynamical systems , 1997 .

[51]  D. Dolgopyat On decay of correlations in Anosov flows , 1998 .

[52]  O. Sarig Subexponential decay of correlations , 2002 .

[53]  Transfer operators for coupled analytic maps , 1997, Ergodic Theory and Dynamical Systems.

[54]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[55]  Ja B Pesin FAMILIES OF INVARIANT MANIFOLDS CORRESPONDING TO NONZERO CHARACTERISTIC EXPONENTS , 1976 .

[56]  Mark Pollicott,et al.  A complex Ruelle-Perron-Frobenius theorem and two counterexamples , 1984, Ergodic Theory and Dynamical Systems.

[57]  J. Slawny,et al.  Maps of intervals with indifferent fixed points: Thermodynamic formalism and phase transitions , 1992 .

[58]  Lai-Sang Young,et al.  What Are SRB Measures, and Which Dynamical Systems Have Them? , 2002 .

[59]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[60]  C. Liverani Decay of correlations , 1995 .

[61]  L. Young Developments in chaotic dynamics , 1998 .

[62]  Makoto Mori ON THE INTERMITTENCY OF A PIECEWISE LINEAR MAP , 1993 .

[63]  Gerhard Keller,et al.  Random perturbations of chaotic dynamical systems: stability of the spectrum , 1997, chao-dyn/9712016.

[64]  Carlangelo Liverani,et al.  Ergodicity in Hamiltonian Systems , 1992, math/9210229.

[65]  C. Liverani Flows, random perturbations and rate of mixing , 1998, Ergodic Theory and Dynamical Systems.

[66]  I. Holopainen Riemannian Geometry , 1927, Nature.

[67]  G. Keller Mixing for Finite Systems of Coupled Tent Maps , 1997 .

[68]  C. Liverani,et al.  A probabilistic approach to intermittency , 1999, Ergodic Theory and Dynamical Systems.

[69]  D. Dolgopyat Prevalence of rapid mixing in hyperbolic flows , 1998, Ergodic Theory and Dynamical Systems.

[70]  D. V. Anosov,et al.  Geodesic flows on closed Riemann manifolds with negative curvature , 1969 .

[71]  Lai-Sang Young,et al.  On the spectra of randomly perturbed expanding maps , 1993 .

[72]  Mark Pollicott,et al.  On the rate of mixing of Axiom A flows , 1985 .

[73]  F. Hunt,et al.  On the approximation of invariant measures , 1992 .

[74]  Stefano Isola,et al.  Renewal Sequences and Intermittency , 1999 .

[75]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[76]  Jon Aaronson,et al.  An introduction to infinite ergodic theory , 1997 .

[77]  G. Keller Equilibrium States in Ergodic Theory , 1998 .

[78]  L. Young Recurrence times and rates of mixing , 1999 .