Experimental observation of quantum state-independent contextuality under no-signaling conditions.

Contextuality, the impossibility of assigning context-independent measurement outcomes, is a critical resource for quantum computation and communication. No-signaling between successive measurements is an essential requirement that should be accomplished in any test of quantum contextuality and that is difficult to achieve in practice. Here, we introduce an optimal quantum state-independent contextuality inequality in which the deviation from the classical bound is maximal. We then experimentally test it using single photons generated from a defect in a bulk silicon carbide, while satisfying the requirement of no-signaling within the experimental error. Our results shed new light on the study of quantum contextuality under no-signaling conditions.