Viruses – seeking and destroying the tumor program

[1]  W. Hahn,et al.  Involvement of PP2A in viral and cellular transformation , 2005, Oncogene.

[2]  D. DiMaio,et al.  Modulation of cell function by small transmembrane proteins modeled on the bovine papillomavirus E5 protein , 2005, Oncogene.

[3]  G. Barber VSV-tumor selective replication and protein translation , 2005, Oncogene.

[4]  P. Working,et al.  Meeting product development challenges in manufacturing clinical grade oncolytic adenoviruses , 2005, Oncogene.

[5]  J. Pipas,et al.  SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation , 2005, Oncogene.

[6]  A. Berk,et al.  Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus , 2005, Oncogene.

[7]  J. Mathis,et al.  Oncolytic adenoviruses – selective retargeting to tumor cells , 2005, Oncogene.

[8]  M. Weitzman,et al.  Inactivating intracellular antiviral responses during adenovirus infection , 2005, Oncogene.

[9]  L. Hawkins,et al.  Development of transcriptionally regulated oncolytic adenoviruses , 2005, Oncogene.

[10]  P. Marcato,et al.  Unshackling the links between reovirus oncolysis, Ras signaling, translational control and cancer , 2005, Oncogene.

[11]  I. Mohr To replicate or not to replicate: achieving selective oncolytic virus replication in cancer cells through translational control , 2005, Oncogene.

[12]  Frank McCormick,et al.  Future prospects for oncolytic therapy , 2005, Oncogene.

[13]  F. McCormick,et al.  Heat shock phenocopies E1B-55K late functions and selectively sensitizes refractory tumor cells to ONYX-015 oncolytic viral therapy. , 2005, Cancer cell.

[14]  D. Walsh,et al.  Regulation of the Translation Initiation Factor eIF4F by Multiple Mechanisms in Human Cytomegalovirus-Infected Cells , 2005, Journal of Virology.

[15]  F. McCormick,et al.  Adenovirus Overrides Cellular Checkpoints for Protein Translation , 2005, Cell cycle.

[16]  F. McCormick,et al.  Adenoviral proteins mimic nutrient/growth signals to activate the mTOR pathway for viral replication , 2005, The EMBO journal.

[17]  J. Campisi Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors , 2005, Cell.

[18]  A. Dejean,et al.  Human Papillomavirus Oncoprotein E7 Targets the Promyelocytic Leukemia Protein and Circumvents Cellular Senescence via the Rb and p53 Tumor Suppressor Pathways , 2005, Molecular and Cellular Biology.

[19]  C. O'Shea,et al.  Modulation of the ARF-p53 Pathway by the Small DNA Tumor Viruses , 2005, Cell cycle.

[20]  C. O'Shea DNA tumor viruses -- the spies who lyse us. , 2005, Current opinion in genetics & development.

[21]  C. Chiang,et al.  E6 oncoprotein represses p53-dependent gene activation via inhibition of protein acetylation independently of inducing p53 degradation. , 2005, Molecular cell.

[22]  David J. Chen,et al.  The Adenovirus E4orf6 Protein Inhibits DNA Double Strand Break Repair and Radiosensitizes Human Tumor Cells in an E1B-55K-independent Manner* , 2005, Journal of Biological Chemistry.

[23]  J. Avruch,et al.  Recent advances in the regulation of the TOR pathway by insulin and nutrients , 2005, Current opinion in clinical nutrition and metabolic care.

[24]  L. Eng,et al.  Effects of Febrile Temperature on Adenoviral Infection and Replication: Implications for Viral Therapy of Cancer , 2005, Journal of Virology.

[25]  F. McCormick,et al.  Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. , 2004, Cancer cell.

[26]  S. Lowe,et al.  Intrinsic tumour suppression , 2004, Nature.

[27]  S. Borah,et al.  Latency-Associated Nuclear Antigen of Kaposi's Sarcoma-Associated Herpesvirus Up-Regulates Transcription of Human Telomerase Reverse Transcriptase Promoter through Interaction with Transcription Factor Sp1 , 2004, Journal of Virology.

[28]  F. McCormick,et al.  Role for PP2A in ARF signaling to p53. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[29]  T. Kiyono,et al.  Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. , 2004, Genes & development.

[30]  Yang Ke,et al.  Human Papillomavirus 16 E6 Oncoprotein Interferences with Insulin Signaling Pathway by Binding to Tuberin* , 2004, Journal of Biological Chemistry.

[31]  K. Helin,et al.  E2F target genes: unraveling the biology. , 2004, Trends in biochemical sciences.

[32]  C. Lilley,et al.  Interactions of viruses with the cellular DNA repair machinery. , 2004, DNA repair.

[33]  R. Cuesta,et al.  Structural Basis for Competitive Inhibition of eIF4G-Mnk1 Interaction by the Adenovirus 100-Kilodalton Protein , 2004, Journal of Virology.

[34]  M. Dobbelstein,et al.  E1B-55-Kilodalton Protein Is Not Required To Block p53-Induced Transcription during Adenovirus Infection , 2004, Journal of Virology.

[35]  R. DePinho,et al.  The LKB1 tumor suppressor negatively regulates mTOR signaling. , 2004, Cancer cell.

[36]  Aaron Aslanian,et al.  Repression of the Arf tumor suppressor by E2F3 is required for normal cell cycle kinetics. , 2004, Genes & development.

[37]  C. Caldas,et al.  p300/CBP and cancer , 2004, Oncogene.

[38]  D. DiMaio,et al.  Role of the retinoblastoma pathway in senescence triggered by repression of the human papillomavirus E7 protein in cervical carcinoma cells. , 2004, Cancer research.

[39]  J. Blenis,et al.  Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression , 2004, Oncogene.

[40]  D. DiMaio,et al.  Repression of the Human Papillomavirus E6 Gene Initiates p53-Dependent, Telomerase-Independent Senescence and Apoptosis in HeLa Cervical Carcinoma Cells , 2004, Journal of Virology.

[41]  Ming Tan,et al.  PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. , 2004, Cancer cell.

[42]  A. Barabasi,et al.  Functional and topological characterization of protein interaction networks , 2004, Proteomics.

[43]  D. Walsh,et al.  Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. , 2004, Genes & development.

[44]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[45]  S. Korsmeyer,et al.  Cell Death Critical Control Points , 2004, Cell.

[46]  W. Wold,et al.  FUNCTIONS AND MECHANISMS OF ACTION OF THE ADENOVIRUS E3 PROTEINS , 2004, International reviews of immunology.

[47]  M. Dobbelstein Replicating adenoviruses in cancer therapy. , 2004, Current topics in microbiology and immunology.

[48]  Kun-Liang Guan,et al.  Dysregulation of the TSC-mTOR pathway in human disease , 2004, Nature Genetics.

[49]  C. Rudin,et al.  An attenuated adenovirus, ONYX-015, as mouthwash therapy for premalignant oral dysplasia. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[50]  F. Zindy,et al.  Arf tumor suppressor promoter monitors latent oncogenic signals in vivo , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[51]  S. Lowe,et al.  Control of apoptosis by p53 , 2003, Oncogene.

[52]  A. Balmain,et al.  Replication of an E1B 55-Kilodalton Protein-Deficient Adenovirus (ONYX-015) Is Restored by Gain-of-Function Rather than Loss-of-Function p53 Mutants , 2003, Journal of Virology.

[53]  D. McCance,et al.  Human Papillomavirus Type 16 E6 Activates TERT Gene Transcription through Induction of c-Myc and Release of USF-Mediated Repression , 2003, Journal of Virology.

[54]  W. Wold,et al.  Transforming Growth Factor β1 Receptor II Is Downregulated by E1A in Adenovirus-Infected Cells , 2003, Journal of Virology.

[55]  W. Wold,et al.  Mutations within the ADP (E3-11.6K) Protein Alter Processing and Localization of ADP and the Kinetics of Cell Lysis of Adenovirus-Infected Cells , 2003, Journal of Virology.

[56]  T. Veldman,et al.  Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[57]  S. Lowe,et al.  Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes during Cellular Senescence , 2003, Cell.

[58]  E. Levanon,et al.  Preferential attachment in the protein network evolution. , 2003, Physical review letters.

[59]  F. McCormick,et al.  Cancer Specific Viruses and the Development of ONYX-015 , 2003, Cancer biology & therapy.

[60]  Petr Pancoska,et al.  p53 has a direct apoptogenic role at the mitochondria. , 2003, Molecular cell.

[61]  E. White,et al.  E1A Sensitizes Cells to Tumor Necrosis Factor Alpha by Downregulating c-FLIPS , 2003, Journal of Virology.

[62]  I. Latorre,et al.  Selective PDZ protein-dependent stimulation of phosphatidylinositol 3-kinase by the adenovirus E4-ORF1 oncoprotein , 2003, Oncogene.

[63]  S. Lowe,et al.  Tumor suppression by Ink4a-Arf: progress and puzzles. , 2003, Current opinion in genetics & development.

[64]  D. Galloway,et al.  Mechanisms by which DNA tumor virus oncoproteins target the Rb family of pocket proteins. , 2003, Carcinogenesis.

[65]  A. Wagner How the global structure of protein interaction networks evolves , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[66]  M. Peter,et al.  The CD95(APO-1/Fas) DISC and beyond , 2003, Cell Death and Differentiation.

[67]  J. Downward Targeting RAS signalling pathways in cancer therapy , 2003, Nature Reviews Cancer.

[68]  T. Veldman,et al.  Simian Virus 40 Small Tumor Antigen Activates AKT and Telomerase and Induces Anchorage-Independent Growth of Human Epithelial Cells , 2002, Journal of Virology.

[69]  E. White,et al.  Viral homologs of BCL-2: role of apoptosis in the regulation of virus infection. , 2002, Genes & development.

[70]  A. Shevchenko,et al.  Analysis of the Adenovirus E1B-55K-Anchored Proteome Reveals Its Link to Ubiquitination Machinery , 2002, Journal of Virology.

[71]  S. Cory,et al.  The Bcl2 family: regulators of the cellular life-or-death switch , 2002, Nature Reviews Cancer.

[72]  F. McCormick,et al.  The RB and p53 pathways in cancer. , 2002, Cancer cell.

[73]  M. Weitzman,et al.  Adenovirus oncoproteins inactivate the Mre11–Rad50–NBS1 DNA repair complex , 2002, Nature.

[74]  A. Dejean,et al.  Deconstructing PML‐induced premature senescence , 2002, The EMBO journal.

[75]  C. Sawyers,et al.  The phosphatidylinositol 3-Kinase–AKT pathway in human cancer , 2002, Nature Reviews Cancer.

[76]  S. Frisch,et al.  Adenovirus-5 E1A: paradox and paradigm , 2002, Nature Reviews Molecular Cell Biology.

[77]  F. McCormick,et al.  Selectively replicating adenoviruses targeting deregulated E2F activity are potent, systemic antitumor agents. , 2002, Cancer cell.

[78]  J. Alwine,et al.  Human Cytomegalovirus Major Immediate-Early Proteins and Simian Virus 40 Large T Antigen Can Inhibit Apoptosis through Activation of the Phosphatidylinositide 3′-OH Kinase Pathway and the Cellular Kinase Akt , 2002, Journal of Virology.

[79]  S. Jhanwar,et al.  SV40 infection induces telomerase activity in human mesothelial cells , 2002, Oncogene.

[80]  S. Kyo,et al.  Complex regulatory mechanisms of telomerase activity in normal and cancer cells: How can we apply them for cancer therapy? , 2002, Oncogene.

[81]  S. Ries,et al.  ONYX-015: mechanisms of action and clinical potential of a replication-selective adenovirus , 2002, British Journal of Cancer.

[82]  Jeffrey M. Trimarchi,et al.  Transcription: Sibling rivalry in the E2F family , 2002, Nature Reviews Molecular Cell Biology.

[83]  W. Kaelin,et al.  Degradation of p53 by adenovirus E4orf6 and E1B55K proteins occurs via a novel mechanism involving a Cullin-containing complex. , 2001, Genes & development.

[84]  P. Branton,et al.  The role of adenovirus E4orf4 protein in viral replication and cell killing , 2001, Oncogene.

[85]  R. Everett,et al.  DNA viruses and viral proteins that interact with PML nuclear bodies , 2001, Oncogene.

[86]  R. S. Weiss,et al.  Link of the unique oncogenic properties of adenovirus type 9 E4‐ORF1 to a select interaction with the candidate tumor suppressor protein ZO‐2 , 2001, The EMBO journal.

[87]  C. Benedict,et al.  Virus targeting of the tumor necrosis factor superfamily. , 2001, Virology.

[88]  W. Wold,et al.  Inhibition of TRAIL-Induced Apoptosis and Forced Internalization of TRAIL Receptor 1 by Adenovirus Proteins , 2001, Journal of Virology.

[89]  Jill D. Gerber,et al.  The p400 Complex Is an Essential E1A Transformation Target , 2001, Cell.

[90]  J. Espinosa,et al.  Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. , 2001, Molecular cell.

[91]  M. Yamakuchi,et al.  Phosphoinositide-3 kinase-PKB/Akt pathway activation is involved in fibroblast Rat-1 transformation by human T-cell leukemia virus type I tax , 2001, Oncogene.

[92]  D. Kirn Oncolytic virotherapy for cancer with the adenovirus dl1520 (Onyx-015): results of Phase I and II trials , 2001, Expert opinion on biological therapy.

[93]  A. Fattaey,et al.  Analyses of Single-Amino-Acid Substitution Mutants of Adenovirus Type 5 E1B-55K Protein , 2001, Journal of Virology.

[94]  A. Krainer,et al.  The adenovirus E4‐ORF4 splicing enhancer protein interacts with a subset of phosphorylated SR proteins , 2001, The EMBO journal.

[95]  F. Martinon,et al.  Three Adenovirus E3 Proteins Cooperate to Evade Apoptosis by Tumor Necrosis Factor-related Apoptosis-inducing Ligand Receptor-1 and -2* , 2001, The Journal of Biological Chemistry.

[96]  M. Hung,et al.  Overexpression of ErbB2 in cancer and ErbB2-targeting strategies , 2000, Oncogene.

[97]  W. Russell,et al.  Update on adenovirus and its vectors. , 2000, The Journal of general virology.

[98]  L. Banks,et al.  Multi-PDZ Domain Protein MUPP1 Is a Cellular Target for both Adenovirus E4-ORF1 and High-Risk Papillomavirus Type 18 E6 Oncoproteins , 2000, Journal of Virology.

[99]  R. Morimoto,et al.  Role of the heat shock response and molecular chaperones in oncogenesis and cell death. , 2000, Journal of the National Cancer Institute.

[100]  B. Hann,et al.  Loss of p14ARF in tumor cells facilitates replication of the adenovirus mutant dl1520 (ONYX-015) , 2000, Nature Medicine.

[101]  I. Tannock,et al.  A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer , 2000, Nature Medicine.

[102]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[103]  Pier Paolo Pandolfi,et al.  PML regulates p53 acetylation and premature senescence induced by oncogenic Ras , 2000, Nature.

[104]  P. Hearing,et al.  The E4-6/7 Protein Functionally Compensates for the Loss of E1A Expression in Adenovirus Infection , 2000, Journal of Virology.

[105]  G. Russo,et al.  Low frequency of alterations of the α (PPP2R1A) and β (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms , 2000, Oncogene.

[106]  D. Hanahan,et al.  The Hallmarks of Cancer , 2000, Cell.

[107]  G. Nabel,et al.  p53 inhibition by the LANA protein of KSHV protects against cell death , 1999, Nature.

[108]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[109]  F. Goodrum,et al.  Roles for the E4 orf6, orf3, and E1B 55-Kilodalton Proteins in Cell Cycle-Independent Adenovirus Replication , 1999, Journal of Virology.

[110]  T. Kleinberger,et al.  Induction of apoptosis by adenovirus E4orf4 protein is specific to transformed cells and requires an interaction with protein phosphatase 2A. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[111]  A. Berk,et al.  p53-Independent and -Dependent Requirements for E1B-55K in Adenovirus Type 5 Replication , 1999, Journal of Virology.

[112]  A. Berk,et al.  Corepressor Required for Adenovirus E1B 55,000-Molecular-Weight Protein Repression of Basal Transcription , 1999, Molecular and Cellular Biology.

[113]  R. Grand,et al.  The Replicative Capacities of Large E1B-Null Group A and Group C Adenoviruses Are Independent of Host Cell p53 Status , 1999, Journal of Virology.

[114]  J. Pipas,et al.  Adenovirus E4orf6 oncoprotein modulates the function of the p53-related protein, p73. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[115]  D. Botstein,et al.  Genomic amplification of a decoy receptor for Fas ligand in lung and colon cancer , 1998, Nature.

[116]  F. Goodrum,et al.  p53 Status Does Not Determine Outcome of E1B 55-Kilodalton Mutant Adenovirus Lytic Infection , 1998, Journal of Virology.

[117]  A. Hengstermann,et al.  Replication of ONYX-015, a Potential Anticancer Adenovirus, Is Independent of p53 Status in Tumor Cells , 1998, Journal of Virology.

[118]  N. Rosen,et al.  Cyclin D Expression Is Controlled Post-transcriptionally via a Phosphatidylinositol 3-Kinase/Akt-dependent Pathway* , 1998, The Journal of Biological Chemistry.

[119]  J. Minna,et al.  Alterations of the PPP2R1B gene in human lung and colon cancer. , 1998, Science.

[120]  Anthony R. Hall,et al.  p53-dependent cell death/apoptosis is required for a productive adenovirus infection , 1998, Nature Medicine.

[121]  P. Branton,et al.  The Early Region 4 orf4 Protein of Human Adenovirus Type 5 Induces p53-Independent Cell Death by Apoptosis , 1998, Journal of Virology.

[122]  L. Magnaghi-Jaulin,et al.  The three members of the pocket proteins family share the ability to repress E2F activity through recruitment of a histone deacetylase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[123]  M. West,et al.  Translational induction of the c-myc oncogene via activation of the FRAP/TOR signalling pathway , 1998, Oncogene.

[124]  E. White,et al.  Suppression of the p300-dependent mdm2 negative-feedback loop induces the p53 apoptotic function. , 1998, Genes & development.

[125]  P. Doherty,et al.  Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells , 1998, Nature.

[126]  S. J. Flint,et al.  The Tripartite Leader Sequence of Subgroup C Adenovirus Major Late mRNAs Can Increase the Efficiency of mRNA Export , 1998, Journal of Virology.

[127]  N. Jones,et al.  Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins , 1997, Nature.

[128]  L. Hartwell,et al.  Integrating genetic approaches into the discovery of anticancer drugs. , 1997, Science.

[129]  S. S. Lee,et al.  Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[130]  P. Branton,et al.  Regulation of p53 levels by the E1B 55-kilodalton protein and E4orf6 in adenovirus-infected cells , 1997, Journal of virology.

[131]  E. White,et al.  p300 binding by E1A cosegregates with p53 induction but is dispensable for apoptosis , 1997, Journal of virology.

[132]  E. R. Seidel,et al.  Inhibition by rapamycin of ornithine decarboxylase and epithelial cell proliferation in intestinal IEC‐6 cells in culture , 1997, British journal of pharmacology.

[133]  F. Goodrum,et al.  The early region 1B 55-kilodalton oncoprotein of adenovirus relieves growth restrictions imposed on viral replication by the cell cycle , 1997, Journal of virology.

[134]  A. Fattaey,et al.  An Adenovirus Mutant That Replicates Selectively in p53- Deficient Human Tumor Cells , 1996, Science.

[135]  A. Yueh,et al.  Selective translation initiation by ribosome jumping in adenovirus-infected and heat-shocked cells. , 1996, Genes & development.

[136]  N. Horikoshi,et al.  Blockage by Adenovirus E4orf6 of Transcriptional Activation by the p53 Tumor Suppressor , 1996, Science.

[137]  J. Ryerse,et al.  The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells , 1996, Journal of virology.

[138]  M. Weitzman,et al.  Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. , 1996, Genes & development.

[139]  R. Hegde,et al.  Short circuiting stress protein expression via a tyrosine kinase inhibitor, herbimycin A , 1995, Journal of cellular physiology.

[140]  R. Reddel,et al.  Telomere elongation in immortal human cells without detectable telomerase activity. , 1995, The EMBO journal.

[141]  K. Helin,et al.  Heterodimerization of the transcription factors E2F-1 and DP-1 is required for binding to the adenovirus E4 (ORF6/7) protein , 1994, Journal of virology.

[142]  D. Carson,et al.  Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers , 1994, Nature.

[143]  M. Skolnick,et al.  A cell cycle regulator potentially involved in genesis of many tumor types. , 1994, Science.

[144]  V. Hu The Cell Cycle , 1994, GWUMC Department of Biochemistry Annual Spring Symposia.

[145]  H. Lane,et al.  p70s6k function is essential for G1 progression , 1993, Nature.

[146]  M. Gerretsen,et al.  A phase III randomised trial of cisplatinum, methotrextate, cisplatinum + methotrexate and cisplatinum + 5-FU in end stage squamous carcinoma of the head and neck. Liverpool Head and Neck Oncology Group. , 1990, British Journal of Cancer.

[147]  K. Münger,et al.  Targeted degradation of the retinoblastoma protein by human papillomavirus E7‐E6 fusion proteins. , 1992, The EMBO journal.

[148]  M. Scheffner,et al.  A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. , 1991, The EMBO journal.

[149]  J. Nevins,et al.  Genetic analysis of the adenovirus E4 6/7 trans activator: interaction with E2F and induction of a stable DNA-protein complex are critical for activity , 1991, Journal of virology.

[150]  Arnold J. Levine,et al.  The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53 , 1990, Cell.

[151]  Christine Chomienne,et al.  The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor α gene to a novel transcribed locus , 1990, Nature.

[152]  P. Branton,et al.  Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[153]  S. J. Flint,et al.  The adenovirus L4 100-kilodalton protein is necessary for efficient translation of viral late mRNA species , 1990, Journal of virology.

[154]  T. Shenk,et al.  The adenovirus E1B 55 kd protein influences mRNA transport via an intranuclear effect on RNA metabolism. , 1989, The EMBO journal.

[155]  E. Harlow,et al.  Cellular targets for transformation by the adenovirus E1A proteins , 1989, Cell.

[156]  Stephen H. Friend,et al.  Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product , 1988, Nature.

[157]  M. White,et al.  Common elements in growth factor stimulation and oncogenic transformation: 85 kd phosphoprotein and phosphatidylinositol kinase activity , 1987, Cell.

[158]  J. Nevins,et al.  Role of an adenovirus E2 promoter binding factor in E1A-mediated coordinate gene control. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[159]  A. Berk,et al.  Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. , 1987, Virology.

[160]  S. Berget,et al.  Role of adenovirus type 2 early region 4 in the early-to-late switch during productive infection , 1986, Journal of virology.

[161]  G. Ketner,et al.  Adenoviral early region 4 is required for efficient viral DNA replication and for late gene expression , 1986, Journal of virology.

[162]  T. Shenk,et al.  The adenovirus E1B-55K transforming polypeptide modulates transport or cytoplasmic stabilization of viral and host cell mRNAs , 1986, Molecular and cellular biology.

[163]  P. A. Peterson,et al.  Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance , 1985, Cell.

[164]  D. Halbert,et al.  Adenovirus early region 4 encodes functions required for efficient DNA replication, late gene expression, and host cell shutoff , 1985, Journal of virology.

[165]  J. Darnell,et al.  Adenovirus E1B proteins are required for accumulation of late viral mRNA and for effects on cellular mRNA translation and transport , 1985, Molecular and cellular biology.

[166]  P. Nowell,et al.  Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. , 1984, Science.

[167]  H. Ruley Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture , 1983, Nature.

[168]  Robert A. Weinberg,et al.  Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes , 1983, Nature.

[169]  N. Glaichenhaus,et al.  The roles of individual polyoma virus early proteins in oncogenic transformation , 1982, Nature.

[170]  Y. Ho,et al.  Isolation of type 5 adenovirus mutants with a cold-sensitive host range phenotype: genetic evidence of an adenovirus transformation maintenance function. , 1982, Virology.

[171]  A. Pardee,et al.  Role of nuclear size in cell growth initiation. , 1979, Science.

[172]  A. Levine,et al.  Characterization of a 54K Dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells , 1979, Cell.

[173]  D. Lane,et al.  T antigen is bound to a host protein in SY40-transformed cells , 1979, Nature.

[174]  A. Chadli THE CANCER CELL , 1924, La Presse medicale.

[175]  W. Gardner,et al.  Carcinogenesis , 1961, The Yale Journal of Biology and Medicine.

[176]  V. Georgiev Virology , 1955, Nature.