Rant or rave: variation over time in the language of online reviews

[1]  Shay B. Cohen,et al.  Understanding Domain Learning in Language Models Through Subpopulation Analysis , 2022, BLACKBOXNLP.

[2]  Roi Reichart,et al.  Domain Adaptation from Scratch , 2022, ArXiv.

[3]  A. Zubiaga,et al.  Building for Tomorrow: Assessing the Temporal Persistence of Text Classifiers , 2022, Inf. Process. Manag..

[4]  Roi Reichart,et al.  DILBERT: Customized Pre-Training for Domain Adaptation with Category Shift, with an Application to Aspect Extraction , 2021, EMNLP.

[5]  Chenhao Tan,et al.  On Positivity Bias in Negative Reviews , 2021, ACL.

[6]  Manit Mishra,et al.  BERT: a sentiment analysis odyssey , 2021, Journal of Marketing Analytics.

[7]  Vijay Mago,et al.  TweetBERT: A Pretrained Language Representation Model for Twitter Text Analysis , 2020, ArXiv.

[8]  Stephen A. Rains,et al.  Perceptions of Uncivil Discourse Online: An Examination of Types and Predictors , 2020 .

[9]  Davide Proserpio,et al.  The Market for Fake Reviews , 2020, EC.

[10]  Florian Stahl,et al.  The Polarity of Online Reviews: Prevalence, Drivers and Implications , 2020, Journal of Marketing Research.

[11]  James Caverlee,et al.  Next-item Recommendation with Sequential Hypergraphs , 2020, SIGIR.

[12]  Roi Reichart,et al.  PERL: Pivot-based Domain Adaptation for Pre-trained Deep Contextualized Embedding Models , 2020, Transactions of the Association for Computational Linguistics.

[13]  Eric W.T. Ngai,et al.  Fake online reviews: Literature review, synthesis, and directions for future research , 2020, Decis. Support Syst..

[14]  Fei Liu,et al.  Sentiment analysis: dynamic and temporal clustering of product reviews , 2020, Applied Intelligence.

[15]  Jianmo Ni,et al.  Justifying Recommendations using Distantly-Labeled Reviews and Fine-Grained Aspects , 2019, EMNLP.

[16]  Wouter M. Kouw,et al.  Back to the Future - Sequential Alignment of Text Representations , 2019, ArXiv.

[17]  Yu Qian,et al.  Users' Opinions in Online Financial Community and Its Impact on the Market , 2019, 2019 16th International Conference on Service Systems and Service Management (ICSSSM).

[18]  Philip S. Yu,et al.  BERT Post-Training for Review Reading Comprehension and Aspect-based Sentiment Analysis , 2019, NAACL.

[19]  Muhammad Rifki Shihab,et al.  Negative online reviews of popular products: understanding the effects of review proportion and quality on consumers’ attitude and intention to buy , 2019, Electron. Commer. Res..

[20]  Ulrike Gretzel,et al.  Online reviews: Differences by submission device , 2019, Tourism Management.

[21]  Jianan Wu,et al.  How Online Reviews Become Helpful: A Dynamic Perspective , 2018, Journal of Interactive Marketing.

[22]  Cristian Danescu-Niculescu-Mizil,et al.  WikiConv: A Corpus of the Complete Conversational History of a Large Online Collaborative Community , 2018, EMNLP.

[23]  Xu Chen,et al.  Explainable Recommendation: A Survey and New Perspectives , 2018, Found. Trends Inf. Retr..

[24]  S. Wahyuningsih MEN AND WOMEN DIFFERENCES IN USING LANGUAGE: A CASE STUDY OF STUDENTS AT STAIN KUDUS , 2018 .

[25]  E. Papaioannou,et al.  The European Trust Crisis and the Rise of Populism , 2017 .

[26]  Peter Holtz,et al.  Cross-Cultural Psychology and the Rise of Academic Capitalism: Linguistic Changes in CCR and JCCP Articles, 1970-2014 , 2017 .

[27]  Yulia Tsvetkov,et al.  Incorporating Dialectal Variability for Socially Equitable Language Identification , 2017, ACL.

[28]  Regina Jucks,et al.  Better to have many opinions than one from an expert? Social validation by one trustworthy source versus the masses in online health forums , 2017, Comput. Hum. Behav..

[29]  Fang Wang,et al.  Online review helpfulness: Impact of reviewer profile image , 2017, Decis. Support Syst..

[30]  Jure Leskovec,et al.  Loyalty in Online Communities , 2017, ICWSM.

[31]  Jan H. Schumann,et al.  “Why Would I Read a Mobile Review?” Device Compatibility Perceptions and Effects on Perceived Helpfulness , 2017 .

[32]  Roi Reichart,et al.  Neural Structural Correspondence Learning for Domain Adaptation , 2016, CoNLL.

[33]  John G. Breslin,et al.  A Hierarchical Model of Reviews for Aspect-based Sentiment Analysis , 2016, EMNLP.

[34]  Gordon H. Hanson,et al.  Importing Political Polarization? The Electoral Consequences of Rising Trade Exposure , 2016, American Economic Review.

[35]  Brendan T. O'Connor,et al.  Demographic Dialectal Variation in Social Media: A Case Study of African-American English , 2016, EMNLP.

[36]  Dirk Hovy,et al.  Hateful Symbols or Hateful People? Predictive Features for Hate Speech Detection on Twitter , 2016, NAACL.

[37]  J. Grieve,et al.  Analyzing lexical emergence in Modern American English online 1 , 2016, English Language and Linguistics.

[38]  Nicole L. Exe,et al.  One-Sided Social Media Comments Influenced Opinions And Intentions About Home Birth: An Experimental Study. , 2016, Health affairs.

[39]  Willem M Otte,et al.  Use of positive and negative words in scientific PubMed abstracts between 1974 and 2014: retrospective analysis , 2015, British Medical Journal.

[40]  Matthew Purver,et al.  Twitter Language Use Reflects Psychological Differences between Democrats and Republicans , 2015, PloS one.

[41]  Alessandro Moschitti,et al.  UNITN: Training Deep Convolutional Neural Network for Twitter Sentiment Classification , 2015, *SEMEVAL.

[42]  Georgios Zervas,et al.  Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud , 2015, Manag. Sci..

[43]  Jacob Eisenstein,et al.  AUDIENCE-MODULATED VARIATION IN ONLINE SOCIAL MEDIA , 2015 .

[44]  Suresh Manandhar,et al.  SemEval-2014 Task 4: Aspect Based Sentiment Analysis , 2014, *SEMEVAL.

[45]  James P. Bagrow,et al.  Human language reveals a universal positivity bias , 2014, Proceedings of the National Academy of Sciences.

[46]  Eric Gilbert,et al.  VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text , 2014, ICWSM.

[47]  Yang Li,et al.  Interpreting the Public Sentiment Variations on Twitter , 2014, IEEE Transactions on Knowledge and Data Engineering.

[48]  Hinrich Schütze,et al.  FLORS: Fast and Simple Domain Adaptation for Part-of-Speech Tagging , 2014, TACL.

[49]  Arthur D. Santana Virtuous or Vitriolic , 2014 .

[50]  Li Wang,et al.  How Noisy Social Media Text, How Diffrnt Social Media Sources? , 2013, IJCNLP.

[51]  Margaret L. Kern,et al.  Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach , 2013, PloS one.

[52]  Ian Rowlands,et al.  Information on the go: A case study of Europeana mobile users , 2013, J. Assoc. Inf. Sci. Technol..

[53]  Jacob Eisenstein,et al.  What to do about bad language on the internet , 2013, NAACL.

[54]  Jure Leskovec,et al.  No country for old members: user lifecycle and linguistic change in online communities , 2013, WWW.

[55]  Brendan T. O'Connor,et al.  Diffusion of Lexical Change in Social Media , 2012, PloS one.

[56]  Rie Koizumi,et al.  Relationships between text length and lexical diversity measures: Can we use short texts of less than 100 tokens? , 2012 .

[57]  Theodoros Lappas,et al.  Fake Reviews: The Malicious Perspective , 2012, NLDB.

[58]  R. Schindler,et al.  Perceived helpfulness of online consumer reviews: The role of message content and style: Perceived helpfulness of online consumer reviews , 2012 .

[59]  Bing Liu,et al.  Sentiment Analysis and Opinion Mining , 2012, Synthesis Lectures on Human Language Technologies.

[60]  Clement T. Yu,et al.  Topic Sentiment Change Analysis , 2011, MLDM.

[61]  Finn Årup Nielsen,et al.  A New ANEW: Evaluation of a Word List for Sentiment Analysis in Microblogs , 2011, #MSM.

[62]  Fagan Stephen,et al.  An Introduction to Textual Econometrics , 2010 .

[63]  Christopher S. G. Khoo,et al.  Aspect-based sentiment analysis of movie reviews on discussion boards , 2010, J. Inf. Sci..

[64]  Brendan T. O'Connor,et al.  A Latent Variable Model for Geographic Lexical Variation , 2010, EMNLP.

[65]  Tejashri Inadarchand Jain,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2010 .

[66]  Alcides Velasquez,et al.  Motivations to participate in online communities , 2010, CHI.

[67]  Shintaro Okazaki Social influence model and electronic word of mouth , 2009 .

[68]  Kyung Hyan Yoo,et al.  What Motivates Consumers to Write Online Travel Reviews? , 2008, J. Inf. Technol. Tour..

[69]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[70]  Y. Benjamini,et al.  False Discovery Rate–Adjusted Multiple Confidence Intervals for Selected Parameters , 2005 .

[71]  John Suler,et al.  The Online Disinhibition Effect , 2004, Cyberpsychology Behav. Soc. Netw..

[72]  S. Wilson,et al.  The Anthropology of Online Communities , 2002 .

[73]  Jean Aitchison,et al.  Language and the Internet , 2002, Lit. Linguistic Comput..

[74]  Abigail Sellen,et al.  How knowledge workers use the web , 2002, CHI.

[75]  David Malvern,et al.  Measuring vocabulary diversity using dedicated software , 2000 .

[76]  A. Ziv,et al.  Teaching and learning with humor: Experiment and replication. , 1988 .

[77]  C. Osgood,et al.  The Pollyanna hypothesis. , 1969 .

[78]  H. B. Mann Nonparametric Tests Against Trend , 1945 .

[79]  George Kingsley Zipf,et al.  The Unity of Nature, Least-Action, and Natural Social Science , 1942 .

[80]  P. Resnik,et al.  Bernice: A Multilingual Pre-trained Encoder for Twitter , 2022, EMNLP.

[81]  OUP accepted manuscript , 2021, Applied Linguistics.

[82]  F. Sadat,et al.  On the Hidden Negative Transfer in Sequential Transfer Learning for Domain Adaptation from News to Tweets , 2021, ADAPTNLP.

[83]  Khaled Shaalan,et al.  Using Artificial Intelligence to Understand What Causes Sentiment Changes on Social Media , 2021, IEEE Access.

[84]  A. Aggarwal,et al.  Analysing the interrelationship between online reviews and sales: the role of review length and sentiment index in electronic markets , 2020, International Journal of Internet Marketing and Advertising.

[85]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[86]  B. S. Harish,et al.  Sentiment Analysis on IMDb Movie Reviews Using Hybrid Feature Extraction Method , 2019, Int. J. Interact. Multim. Artif. Intell..

[87]  Sentiment Analysis for IMDb Movie Review , 2019 .

[88]  Matthew Gentzkow,et al.  Polarization in 2016 , 2016 .

[89]  Bernd Kortmann,et al.  Analyzing lexical emergence in Modern American English online 1 , 2016, English Language and Linguistics.

[90]  Mohammad Salehan,et al.  Predicting the performance of online consumer reviews: A sentiment mining approach to big data analytics , 2014, Decis. Support Syst..

[91]  Georg Lackermair,et al.  Importance of Online Product Reviews from a Consumer's Perspective , 2013 .

[92]  Fabio Massimo Zanzotto,et al.  Language Evolution in Social Media: a Preliminary Study , 2012 .

[93]  Qing Cao,et al.  Exploring determinants of voting for the "helpfulness" of online user reviews: A text mining approach , 2011, Decis. Support Syst..

[94]  S. Cuéllar,et al.  Translation quality assessment. A model revisited , 2002 .

[95]  R. Forthofer,et al.  Rank Correlation Methods , 1981 .