A note on a family of two-variable polynomials

The main object of this paper is to construct a two-variable analogue of Jacobi polynomials and to give some properties of these polynomials. We show that these polynomials are orthogonal, then we obtain various recurrence formulas for them. Furthermore, we give some integral representations for these polynomials.

[1]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[2]  Ervin Feldheim Relations entre les polynomes de Jacobi, Laguerre et Hermite , 1942 .

[3]  Yuan Xu,et al.  Orthogonal Polynomials of Several Variables , 2014, 1701.02709.

[4]  A. Yilmazer Jacobi polynomials approximation to the one-speed neutron transport equation , 2007 .

[5]  A. W. Kemp,et al.  A treatise on generating functions , 1984 .

[6]  Mourad E. H. Ismail,et al.  Orthogonal polynomials : theory and practice , 1990 .

[7]  L. Carlitz An integral for the product of two Laguerre polynomials. , 1962 .

[8]  Jesús S. Dehesa,et al.  Information entropy of classical orthogonal polynomials and their application to the harmonic oscillator and Coulomb potentials , 1997 .

[9]  J. S. Dehesa,et al.  Quantum information entropies and orthogonal polynomials , 2001 .

[10]  A. Yilmazer,et al.  On equiconvergence of ultraspherical polynomials solution of one-speed neutron transport equation , 2006 .

[11]  Hari M. Srivastava,et al.  An Integral Representation for the Product of Two Jacobi Polynomials , 1976 .

[12]  T. Koornwinder Two-Variable Analogues of the Classical Orthogonal Polynomials , 1975 .

[13]  Information entropy of Gegenbauer polynomials and Gaussian quadrature , 2003 .

[14]  H.M. Srivastava,et al.  The lagrange polynomials in several variables , 2001 .

[15]  Yáñez,et al.  Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. , 1994, Physical review. A, Atomic, molecular, and optical physics.