Quantum Behaved Swarm Intelligent Techniques for Image Analysis: A Detailed Survey

In this chapter, an exhaustive survey of quantum behaved techniques on swarm intelligent is presented. The techniques have been categorized into different classes, and in conclusion, a comparison is made according to the benefits of the approaches taken for review. The above-mentioned techniques are classified based on the information they exploit, for instance, neural network related, meta-heuristic and evolutionary algorithm related, and other distinguished approaches are considered. Neural NetworkBased Approaches exhibit a few brain-like activities, which are programmatically complicated, for instance, learning, optimization, etc. Meta-Heuristic Approaches update solution generation-wise for optimization, and the approaches differ based on the problem definition.

[1]  M. Perus COMMON MATHEMATICAL FOUNDATIONS OF NEURAL AND QUANTUM INFORMATICS , 1998 .

[2]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[3]  Bin Li,et al.  Genetic Algorithm Based-On the Quantum Probability Representation , 2002, IDEAL.

[4]  V. Kreinovich,et al.  Fast quantum algorithms for handling probabilistic, interval, and fuzzy uncertainty , 2003, 22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003.

[5]  Ujjwal Maulik,et al.  Quantum inspired genetic algorithm and particle swarm optimization using chaotic map model based interference for gray level image thresholding , 2014, Swarm Evol. Comput..

[6]  Siddhartha Bhattacharyya,et al.  An Efficient Quantum Inspired Genetic Algorithm with Chaotic Map Model Based Interference and Fuzzy Objective Function for Gray Level Image Thresholding , 2011, 2011 International Conference on Computational Intelligence and Communication Networks.

[7]  I. Sethi,et al.  Thresholding based on histogram approximation , 1995 .

[8]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[9]  Hamid R. Tizhoosh,et al.  Image thresholding using type II fuzzy sets , 2005, Pattern Recognit..

[10]  Tony Hey,et al.  Quantum computing: an introduction , 1999 .

[11]  Krzysztof Juszczyszyn Virtual Communities and the Alignment of Web Ontologies , 2006 .

[12]  Dan Ventura,et al.  Quantum Computational Intelligence: Answers and Questions , 1999 .

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Lov K. Grover Quantum Computers Can Search Rapidly by Using Almost Any Transformation , 1998 .

[15]  Siddhartha Bhattacharyya,et al.  A Brief Survey of Color Image Preprocessing and Segmentation Techniques , 2011 .

[16]  Hugo de Garis,et al.  Quantum versus Evolutionary Systems. Total versus Sampled Search , 2003, ICES.

[17]  Juan R. Rabuñal,et al.  Encyclopedia of Artificial Intelligence (3 Volumes) , 2009, Encyclopedia of Artificial Intelligence.

[18]  Vijayan Sugumaran Intelligent Information Technologies: Concepts, Methodologies, Tools and Applications , 2007 .

[19]  Prasanna K. Sahoo,et al.  Threshold selection using Renyi's entropy , 1997, Pattern Recognit..

[20]  T. Hogg Quantum search heuristics , 2000 .

[21]  Shyang Chang,et al.  A new criterion for automatic multilevel thresholding , 1995, IEEE Trans. Image Process..

[22]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[23]  Rafael Dueire Lins,et al.  Binarizing and filtering historical documents with back-to-front interference , 2006, SAC '06.

[24]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[25]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[26]  Herschel Rabitz,et al.  Efficient algorithms for the laboratory discovery of optimal quantum controls. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Ujjwal Maulik,et al.  New Quantum Inspired Tabu Search for Multi-level Colour Image thresholding , 2014, 2014 International Conference on Computing for Sustainable Global Development (INDIACom).

[28]  Mao-Jiun J. Wang,et al.  Image thresholding by minimizing the measures of fuzzines , 1995, Pattern Recognit..

[29]  Ujjwal Maulik,et al.  Multiobjective Genetic Clustering for Pixel Classification in Remote Sensing Imagery , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[31]  Thomas Weinacht,et al.  Using feedback for coherent control of quantum systems , 2002 .

[32]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[33]  Juan M. Corchado,et al.  An Ambient Intelligence Based Multi-Agent System for Alzheimer Health Care , 2009, Int. J. Ambient Comput. Intell..

[34]  Subhash Kak,et al.  Quantum Neural Computing , 1995 .

[35]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[36]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[37]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[38]  Gexiang Zhang,et al.  Resemblance Coefficient and a Quantum Genetic Algorithm for Feature Selection , 2004, Discovery Science.

[39]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[40]  Ujjwal Maulik,et al.  New quantum inspired meta-heuristic methods for multi-level thresholding , 2013, 2013 International Conference on Advances in Computing, Communications and Informatics (ICACCI).

[41]  LearningRonald L. ChrisleySchool Quantum Learning , 1995 .

[42]  Xavier Cufí,et al.  Yet Another Survey on Image Segmentation: Region and Boundary Information Integration , 2002, ECCV.

[43]  Zhizhai Hu,et al.  Quantum computation via neural networks applied to image processing and pattern recognition , 2001 .

[44]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[45]  Patrick Siarry,et al.  A multilevel automatic thresholding method based on a genetic algorithm for a fast image segmentation , 2008, Comput. Vis. Image Underst..

[46]  Tad Hogg,et al.  HIGHLY STRUCTURED SEARCHES WITH QUANTUM COMPUTERS , 1998 .

[47]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[48]  Haym Hirsh A Quantum Leap for AI , 1999 .

[49]  Ujjwal Maulik,et al.  Quantum Inspired Automatic Clustering for Multi-level Image Thresholding , 2014, 2014 International Conference on Computational Intelligence and Communication Networks.

[50]  Gexiang Zhang,et al.  An Improved Quantum Genetic Algorithm and Its Application , 2003, RSFDGrC.

[51]  Quantum evolutionary programming , 2001 .

[52]  Du-Ming Tsai,et al.  A fast thresholding selection procedure for multimodal and unimodal histograms , 1995, Pattern Recognit. Lett..

[53]  Ujjwal Maulik,et al.  Quantum Behaved Multi-objective PSO and ACO Optimization for Multi-level Thresholding , 2014, 2014 International Conference on Computational Intelligence and Communication Networks.

[54]  Nobuyuki Matsui,et al.  A Multi-Layerd Feed-Forward Network Based on Qubit Neuron Model , 2002 .

[55]  Tony R. Martinez,et al.  Quantum associative memory , 2000, Inf. Sci..

[56]  Vijayan Sugumaran Organizational Efficiency through Intelligent Information Technologies , 2012 .

[57]  P. Benioff Quantum Mechanical Models of Turing Machines That Dissipate No Energy , 1982 .

[58]  E. Shaw The Schooling of Fishes , 1962 .

[59]  Nadia Nedjah,et al.  Quantum-Inspired Evolutionary State Assignment for Synchronous Finite State Machines , 2008, J. Univers. Comput. Sci..

[60]  Jing Wang,et al.  Swarm Intelligence in Cellular Robotic Systems , 1993 .

[61]  Mitja Peruš Mind: neural computing plus quantum consciousness , 1997 .

[62]  Ajit Narayanan,et al.  Quantum artificial neural network architectures and components , 2000, Inf. Sci..

[63]  A. D. Brink,et al.  Minimum cross-entropy threshold selection , 1996, Pattern Recognit..

[64]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[65]  S. N. Deepa,et al.  An Intelligent Operator for Genetic Fuzzy Rule Based System , 2011, Int. J. Intell. Inf. Technol..

[66]  Li Weigang A Study of Parallel Self-Organizing Map , 1998 .

[67]  Tony R. Martinez,et al.  An Artificial Neuron with Quantum Mechanical Properties , 1997, ICANNGA.

[68]  D. Fotiadis,et al.  Artificial neural network methods in quantum mechanics , 1997, quant-ph/9705029.

[69]  Gilles Brassard,et al.  Tight bounds on quantum searching , 1996, quant-ph/9605034.

[70]  Ajit Narayanan,et al.  Quantum-inspired genetic algorithms , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[71]  A. A. Ezhov,et al.  Pattern Recognition with Quantum Neural Networks , 2001, ICAPR.

[72]  Heng-Da Cheng,et al.  Fuzzy partition of two-dimensional histogram and its application to thresholding , 1999, Pattern Recognit..

[73]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[74]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[75]  Thierry Pun,et al.  A new method for grey-level picture thresholding using the entropy of the histogram , 1980 .

[76]  Nobuyuki Matsui,et al.  An Examination of Qubit Neural Network in Controlling an Inverted Pendulum , 2005, Neural Processing Letters.

[77]  R. Feynman Simulating physics with computers , 1999 .

[78]  Li Na,et al.  Novel Quantum Genetic Algorithm and Its Applications , 2006 .

[79]  M. Pachter,et al.  Challenges of autonomous control , 1998 .

[80]  Martin Lukac,et al.  Evolving quantum circuits using genetic algorithm , 2002, Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.

[81]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithms with a new termination criterion, H/sub /spl epsi// gate, and two-phase scheme , 2004, IEEE Transactions on Evolutionary Computation.

[82]  U. Maulik,et al.  Chaotic Map Model-Based Interference Employed in Quantum-Inspired Genetic Algorithm to Determine the Optimum Gray Level Image Thresholding , 2015 .

[83]  Ujjwal Maulik,et al.  Quantum inspired meta-heuristic algorithms for multi-level thresholding for true colour images , 2013, 2013 Annual IEEE India Conference (INDICON).

[84]  Siddhartha Bhattacharyya,et al.  Determination of optimal threshold of a gray-level image using a quantum inspired genetic algorithm with interference based on a random map model , 2010, 2010 IEEE International Conference on Computational Intelligence and Computing Research.

[85]  M. Perus,et al.  Quantum systems can realize content-addressable associative memory , 2000, Appl. Math. Lett..

[86]  Moncef Gabbouj,et al.  Quantum mechanics in computer vision: Automatic object extraction , 2013, 2013 IEEE International Conference on Image Processing.

[87]  Ujjwal Maulik,et al.  Multi-level thresholding using quantum inspired meta-heuristics , 2014, Knowl. Based Syst..

[88]  Tad Hogg,et al.  Quantum optimization , 2000, Inf. Sci..