Drift Analysis and Evolutionary Algorithms Revisited

One of the easiest randomized greedy optimization algorithms is the following evolutionary algorithm which aims at maximizing a boolean function $f:\{0,1\}^n \to {\mathbb R}$. The algorithm starts with a random search point $\xi \in \{0,1\}^n$, and in each round it flips each bit of $\xi$ with probability $c/n$ independently at random, where $c>0$ is a fixed constant. The thus created offspring $\xi'$ replaces $\xi$ if and only if $f(\xi') \ge f(\xi)$. The analysis of the runtime of this simple algorithm on monotone and on linear functions turned out to be highly non-trivial. In this paper we review known results and provide new and self-contained proofs of partly stronger results.

[1]  Benjamin Doerr,et al.  Non-existence of linear universal drift functions , 2010, Theor. Comput. Sci..

[2]  Jens Jägersküpper,et al.  Combining Markov-Chain Analysis and Drift Analysis , 2011, Algorithmica.

[3]  Benjamin Doerr,et al.  Multiplicative Drift Analysis , 2010, GECCO '10.

[4]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[5]  Thomas Jansen,et al.  Mutation Rate Matters Even When Optimizing Monotonic Functions , 2013, Evolutionary Computation.

[6]  Carsten Witt,et al.  Tight Bounds on the Optimization Time of a Randomized Search Heuristic on Linear Functions† , 2013, Combinatorics, Probability and Computing.

[7]  Daniel Johannsen,et al.  Random combinatorial structures and randomized search heuristics , 2010 .

[8]  Thomas Jansen,et al.  Optimization with randomized search heuristics - the (A)NFL theorem, realistic scenarios, and difficult functions , 2002, Theor. Comput. Sci..

[9]  Timo Kötzing Concentration of First Hitting Times Under Additive Drift , 2015, Algorithmica.

[10]  B. Hajek Hitting-time and occupation-time bounds implied by drift analysis with applications , 1982, Advances in Applied Probability.

[11]  Schloss Birlinghoven,et al.  How Genetic Algorithms Really Work I.mutation and Hillclimbing , 2022 .

[12]  Pietro Simone Oliveto,et al.  Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation , 2008, Algorithmica.

[13]  Jonathan E. Rowe,et al.  Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links , 2009, Int. J. Intell. Comput. Cybern..

[14]  Xin Yao,et al.  A study of drift analysis for estimating computation time of evolutionary algorithms , 2004, Natural Computing.

[15]  Xin Yao,et al.  Drift analysis and average time complexity of evolutionary algorithms , 2001, Artif. Intell..

[16]  Thomas Jansen,et al.  On the analysis of the (1+1) evolutionary algorithm , 2002, Theor. Comput. Sci..

[17]  Leslie Ann Goldberg,et al.  Adaptive Drift Analysis , 2011, Algorithmica.

[18]  Thomas Jansen,et al.  On the brittleness of evolutionary algorithms , 2007, FOGA'07.

[19]  Pietro Simone Oliveto,et al.  Erratum: Simplified Drift Analysis for Proving Lower Bounds in Evolutionary Computation , 2008, PPSN.