Automata Theory on Sliding Windows

In a recent paper we analyzed the space complexity of streaming algorithms whose goal is to decide membership of a sliding window to a fixed language. For the class of regular languages we proved a space trichotomy theorem: for every regular language the optimal space bound is either constant, logarithmic or linear. In this paper we continue this line of research: We present natural characterizations for the constant and logarithmic space classes and establish tight relationships to the concept of language growth. We also analyze the space complexity with respect to automata size and prove almost matching lower and upper bounds. Finally, we consider the decision problem whether a language given by a DFA/NFA admits a sliding window algorithm using logarithmic/constant space.

[1]  Noga Alon,et al.  The Space Complexity of Approximating the Frequency Moments , 1999 .

[2]  Markus Lohrey,et al.  Querying Regular Languages over Sliding Windows , 2016, FSTTCS.

[3]  Raphaël Clifford,et al.  Approximate Hamming Distance in a Stream , 2016, ICALP.

[4]  Richard Edwin Stearns,et al.  Memory bounds for recognition of context-free and context-sensitive languages , 1965, SWCT.

[5]  Frédéric Magniez,et al.  Validating XML documents in the streaming model with external memory , 2010, ICDT '12.

[6]  Gurmeet Singh Manku,et al.  Approximate counts and quantiles over sliding windows , 2004, PODS.

[7]  Nutan Limaye,et al.  Streaming Algorithms for Some Problems in Log-Space , 2010, TAMC.

[8]  Cristina Sirangelo,et al.  Constant-Memory Validation of Streaming XML Documents Against DTDs , 2007, ICDT.

[9]  Ely Porat,et al.  The k-mismatch problem revisited , 2016, SODA.

[10]  Nathanaël Fijalkow,et al.  The Online Space Complexity of Probabilistic Languages , 2016, LFCS.

[11]  Piotr Indyk,et al.  Maintaining Stream Statistics over Sliding Windows , 2002, SIAM J. Comput..

[12]  Markus Lohrey,et al.  Isomorphism of regular trees and words , 2013, Inf. Comput..

[13]  Jeffrey Shallit,et al.  Automaticity I: Properties of a Measure of Descriptional Complexity , 1996, J. Comput. Syst. Sci..

[14]  Jaikumar Radhakrishnan,et al.  Streaming algorithms for language recognition problems , 2011, Theor. Comput. Sci..

[15]  Andrew McGregor,et al.  Dynamic Graphs in the Sliding-Window Model , 2013, ESA.

[16]  Dung T. Huynh,et al.  The Parallel Complexity of Finite-State Automata Problems , 1992, Inf. Comput..

[17]  Lukasz Golab,et al.  Processing Sliding Window Multi-Joins in Continuous Queries over Data Streams , 2003, VLDB.

[18]  Rafail Ostrovsky,et al.  Optimal sampling from sliding windows , 2009, J. Comput. Syst. Sci..

[19]  Vladimir Braverman,et al.  Sliding Window Algorithms , 2016, Encyclopedia of Algorithms.

[20]  Zvi Galil,et al.  Real-Time Streaming String-Matching , 2014, TALG.

[21]  Richard M. Karp,et al.  Some Bounds on the Storage Requirements of Sequential Machines and Turing Machines , 1967, JACM.

[22]  Jeffrey Shallit,et al.  Characterizing Regular Languages with Polynomial Densities , 1992, MFCS.

[23]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[24]  Artur Jez,et al.  Hyper-minimisation Made Efficient , 2009, MFCS.

[25]  Luc Segou Validating Streaming XML Documents , 2010 .

[26]  Alberto Policriti,et al.  Witnessing differences without redundancies , 1997 .

[27]  Claire Mathieu,et al.  Recognizing Well-Parenthesized Expressions in the Streaming Model , 2014, SIAM J. Comput..

[28]  Nutan Limaye,et al.  Streaming Algorithms for Recognizing Nearly Well-Parenthesized Expressions , 2011, MFCS.

[29]  Jeffrey Shallit,et al.  Finding the Growth Rate of a Regular or Context-Free Language in Polynomial Time , 2010, Int. J. Found. Comput. Sci..

[30]  Ely Porat,et al.  Dictionary Matching in a Stream , 2015, ESA.

[31]  Howard Straubing,et al.  FINITE SEMIGROUP VARIETIES OF THE FORM V,D , 1985 .

[32]  Richard Edwin Stearns,et al.  Hierarchies of memory limited computations , 1965, SWCT.

[33]  R. Ostrovsky,et al.  Smooth Histograms for Sliding Windows , 2007, FOCS 2007.

[34]  Rajeev Motwani,et al.  Maintaining variance and k-medians over data stream windows , 2003, PODS.

[35]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[36]  Christof Löding,et al.  Regularity Problems for Visibly Pushdown Languages , 2006, STACS.

[37]  Olivier Serre,et al.  Streaming Property Testing of Visibly Pushdown Languages , 2015, Electron. Colloquium Comput. Complex..

[38]  Charu C. Aggarwal,et al.  Data Streams - Models and Algorithms , 2014, Advances in Database Systems.

[39]  Philippe Flajolet,et al.  Probabilistic Counting Algorithms for Data Base Applications , 1985, J. Comput. Syst. Sci..

[40]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[41]  Michel Latteux,et al.  Langages à un Compteur , 1983, J. Comput. Syst. Sci..

[42]  J. Ian Munro,et al.  Selection and sorting with limited storage , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).