Manhattan orbifolds

We investigate a class of metrics for 2-manifolds in which, e xcept for a discrete set of singular points, the metric is locally isometric to an L1 (or equivalentlyL∞) metric, and show that with certain additional conditions such metrics are injective. We use this construction to find t he tight span of squaregraphs and related graphs, and we find an injective metric that approximates the distances i n the hyperbolic plane analogously to the way the rectilinear metrics approximate the Euclidean distance.

[1]  Christopher Croke,et al.  COLLAPSIBLE POLYHEDRA AND MEDIAN SPACES , 1998 .

[2]  H. Bandelt,et al.  Metric graph theory and geometry: a survey , 2006 .

[3]  Dénes König,et al.  Theorie der endlichen und unendlichen Graphen : kombinatorische Topologie der Streckenkomplexe , 1935 .

[4]  Yun Tang,et al.  An injective metrization for collapsible polyhedra , 1983 .

[5]  Marek Chrobak,et al.  The 3-server problem in the plane , 1999, Theor. Comput. Sci..

[6]  Katharina T. Huber,et al.  Metric spaces in pure and applied mathematics , 2001 .

[7]  Christos H. Papadimitriou,et al.  On a Conjecture Related to Geometric Routing , 2004, ALGOSENSORS.

[8]  N. Aronszajn,et al.  EXTENSION OF UNIFORMLY CONTINUOUS TRANSFORMATIONS AND HYPERCONVEX METRIC SPACES , 1956 .

[9]  Robert Krauthgamer,et al.  Algorithms on negatively curved spaces , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[10]  David Eppstein,et al.  Succinct Greedy Graph Drawing in the Hyperbolic Plane , 2008, GD.

[11]  Marek Chrobak,et al.  Generosity helps, or an 11–competitive algorithm for three servers , 1992, SODA '92.

[12]  David Eppstein,et al.  Squarepants in a tree: sum of subtree clustering and hyperbolic pants decomposition , 2006, SODA '07.

[13]  Van de M. L. J. Vel Theory of convex structures , 1993 .

[14]  Lawrence L. Larmore,et al.  T-Theory Applications to Online Algorithms for the Server Problem , 2006, ArXiv.

[15]  Oliver Goodman,et al.  On the tight span of an antipodal graph , 2000, Discret. Math..

[16]  J. Isbell Six theorems about injective metric spaces , 1964 .

[17]  Robert D. Kleinberg Geographic Routing Using Hyperbolic Space , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[18]  Feodor F. Dragan,et al.  Center and diameter problems in plane triangulations and quadrangulations , 2002, SODA '02.