Robust Backlash Estimation for Industrial Drive-Train Systems—Theory and Validation

Backlash compensation is used in modern machine-tool controls to ensure high-accuracy positioning. When wear of a machine causes deadzone width to increase, high-accuracy control may be maintained if the deadzone is accurately estimated. Deadzone estimation is also an important parameter to indicate the level of wear in a machine transmission, and tracking its development is essential for condition-based maintenance. This paper addresses the backlash estimation problem using sliding-mode and adaptive estimation principles and shows that prognosis of the development of wear is possible in both theory and practice. This paper provides the proof of asymptotic convergence of the suggested estimator, and it shows how position offset between motor and load is efficiently utilized in the design of a very efficient estimator. The algorithm is experimentally tested on a drive-train system with the state-of-the-art Siemens equipment. The experiments validate the theory and show that expected performance and robustness to parameter uncertainties are both achieved.

[1]  R Kalantari,et al.  BACKLASH NONLINEARITY MODELING AND ADAPTIVE CONTROLLER DESIGN FOR AN ELECTROMECHANICAL POWER TRANSMISSION SYSTEM , 2009 .

[2]  Tor Arne Johansen,et al.  Parameter estimation and compensation in systems with nonlinearly parameterized perturbations , 2010, Autom..

[3]  Leonid Fridman,et al.  Backlash phenomenon observation and identification in electromechanical system , 2007 .

[4]  Jozef Vörös,et al.  Modeling and identification of systems with backlash , 2010, Autom..

[5]  Geir Hovland,et al.  Nonlinear identification of backlash in robot transmissions , 2002 .

[6]  Bayu Jayawardhana,et al.  PID control of second-order systems with hysteresis , 2007, 2007 46th IEEE Conference on Decision and Control.

[7]  Anuradha M. Annaswamy,et al.  Parameter convergence in nonlinearly parameterized systems , 2003, IEEE Trans. Autom. Control..

[8]  Mattias Nordin,et al.  Controlling mechanical systems with backlash - a survey , 2002, Autom..

[9]  Per-Olof Gutman,et al.  New models for backlash and gear play , 1997 .

[10]  Ivan Tyukin,et al.  Adaptation and Parameter Estimation in Systems With Unstable Target Dynamics and Nonlinear Parametrization , 2005, IEEE Transactions on Automatic Control.

[11]  Bo Egardt,et al.  Estimation of backlash with application to automotive powertrains , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[12]  Vijay Kumar,et al.  An impact model of mechanical backlash for control system analysis , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[13]  Henk Nijmeijer,et al.  Adaptive observers and parameter estimation for a class of systems nonlinear in the parameters , 2009, Autom..

[14]  Tor Arne Johansen,et al.  State and Parameter Estimation for Nonlinearly Parameterized Systems: An H∞-Based Approach , 2011 .

[15]  H. Nijmeijer,et al.  Adaptive Observers for Nonlinearly Parameterized Systems Subjected to Parametric Constraints , 2014 .

[16]  Elena Panteley,et al.  Cascaded nonlinear time-varying systems : Analysis and design , 2005 .

[17]  P. Olver Nonlinear Systems , 2013 .

[18]  Mogens Blanke,et al.  Backlash Estimation for Industrial Drive-Train Systems , 2017 .

[19]  Julian A. de Marchi,et al.  MODELING OF DYNAMIC FRICTION, IMPACT BACKLASH AND ELASTIC COMPLIANCE NONLINEARITIES IN MACHINE TOOLS, WITH APPLICATIONS TO ASYMMETRIC VISCOUS AND KINETIC FRICTION IDENTIFICATION , 1998 .

[20]  Hartmut Logemann,et al.  A class of differential-delay systems with hysteresis: Asymptotic behaviour of solutions☆ , 2008 .

[21]  Jan Tommy Gravdahl,et al.  Modeling and simulation for automatic control , 2002 .

[22]  Tore Hägglund Automatic on-line estimation of backlash in control loops , 2007 .

[23]  Peter Templin Simultaneous estimation of driveline dynamics and backlash size for control design , 2008, 2008 IEEE International Conference on Control Applications.

[24]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[25]  Vadim I. Utkin,et al.  On multi-input chattering-free second-order sliding mode control , 2000, IEEE Trans. Autom. Control..

[26]  Naira Hovakimyan,et al.  L1 Adaptive Control Theory - Guaranteed Robustness with Fast Adaptation , 2010, Advances in design and control.

[27]  Franck Plestan,et al.  Finite Time Stabilization of An Uncertain Chain of Integrators by Integral Sliding Mode Approach , 2017 .

[28]  Leonid M. Fridman,et al.  Second-order sliding-mode observer for mechanical systems , 2005, IEEE Transactions on Automatic Control.

[29]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[30]  Sarah K. Spurgeon,et al.  Sliding mode observers: a survey , 2008, Int. J. Syst. Sci..

[31]  Jaime A. Moreno,et al.  Strict Lyapunov Functions for the Super-Twisting Algorithm , 2012, IEEE Transactions on Automatic Control.

[32]  Hartmut Logemann,et al.  Systems with hysteresis in the feedback loop: existence, regularity and asymptotic behaviour of solutions , 2003 .

[33]  J. C. Cadiou,et al.  Estimation of backlash phenomenon in the electromechanical actuator , 2005 .

[34]  Tor Arne Johansen,et al.  Estimation of states and parameters for linear systems with nonlinearly parameterized perturbations , 2011, Syst. Control. Lett..

[35]  Jeffrey L. Stein,et al.  Estimation of Gear Backlash: Theory and Simulation , 1998 .

[36]  Gang Tao,et al.  Adaptive control of systems with backlash , 1993, Autom..