Solvability based on E-property for the nonlinear symmetric cone complementarity problem

Abstract In this paper, we introduce some concepts of E-properties for nonlinear transformations defined on Euclidean Jordan algebras, such as E-property, quad E-property, uniform Jordan E-property, E 0 -property. And then we study the implications among these E-properties. In particular, the quad E-property is equivalent to the E-property. The K -copositive property implies the E 0 -property. The uniform Jordan E-property is proved to have the E 0 and R 0 -properties. Based on the E-properties, we get some sufficient conditions to guarantee the solution existence for the nonlinear symmetric cone complementarity problem.

[1]  M. Seetharama Gowda,et al.  Automorphism Invariance of P- and GUS-Properties of Linear Transformations on Euclidean Jordan Algebras , 2006, Math. Oper. Res..

[2]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[3]  Positive Principal Minor Property of Linear Transformations on Euclidean Jordan Algebras , 2009 .

[4]  Jordan quadratic SSM-property and its relation to copositive linear transformations on Euclidean Jordan algebras , 2010 .

[5]  M. Seetharama Gowda,et al.  On the P-property of Z and Lyapunov-like transformations on Euclidean Jordan algebras , 2012 .

[6]  M. Seetharama Gowda,et al.  Some P-Properties for Nonlinear Transformations on Euclidean Jordan Algebras , 2005, Math. Oper. Res..

[7]  M. Baes Convexity and differentiability properties of spectral functions and spectral mappings on Euclidean Jordan algebras , 2007 .

[8]  J. Faraut,et al.  Analysis on Symmetric Cones , 1995 .

[9]  Strict Semimonotonicity Property of Linear Transformations on Euclidean Jordan Algebras , 2010 .

[10]  Lingchen Kong,et al.  Sufficiency of linear transformations on Euclidean Jordan algebras , 2009, Optim. Lett..

[11]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[12]  Lingchen Kong Quadratic convergence of a smoothing Newton method for symmetric cone programming without strict complementarity , 2012 .

[13]  Akiko Yoshise,et al.  Interior Point Trajectories and a Homogeneous Model for Nonlinear Complementarity Problems over Symmetric Cones , 2006, SIAM J. Optim..

[14]  Liang Fang,et al.  A new O(sqrt(n)L)-iteration predictor-corrector algorithm with wide neighborhood for semidefinite programming , 2014, J. Comput. Appl. Math..

[15]  Zheng-Hai Huang,et al.  Smoothing algorithms for complementarity problems over symmetric cones , 2010, Comput. Optim. Appl..

[16]  R. Sznajder,et al.  Some P-properties for linear transformations on Euclidean Jordan algebras , 2004 .

[17]  Sanyang Liu,et al.  A one-step smoothing Newton method for second-order cone programming , 2009 .

[19]  Akiko Yoshise Homogeneous Algorithms for Monotone Complementarity Problems over Symmetric Cones , 2011 .

[20]  M. Seetharama Gowda,et al.  Some inertia theorems in Euclidean Jordan algebras , 2009 .

[21]  Deyun Wei,et al.  Improved smoothing Newton methods for symmetric cone complementarity problems , 2012, Optim. Lett..

[22]  Deyun Wei,et al.  Complementarity properties of the Lyapunov transformation over symmetric cones , 2012 .

[23]  R. Sznajder,et al.  The Q-property of composite transformations and the P-property of Stein-type transformations on self-dual and symmetric cones , 2006 .

[24]  M. Seetharama Gowda,et al.  Z-transformations on proper and symmetric cones , 2008, Math. Program..

[25]  Michael C. Ferris,et al.  Engineering and Economic Applications of Complementarity Problems , 1997, SIAM Rev..

[26]  M. Malik,et al.  Cone complementarity problems with finite solution sets , 2006, Oper. Res. Lett..

[27]  M. Seetharama Gowda,et al.  Some Global Uniqueness and Solvability Results for Linear Complementarity Problems Over Symmetric Cones , 2007 .

[28]  On the completely-Q property for linear transformations on Euclidean Jordan algebras , 2013 .

[29]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..