ARDesigner: a web-based system for allosteric RNA design.

[1]  Amir Shpilka,et al.  Reconstruction of Generalized Depth-3 Arithmetic Circuits with Bounded Top Fan-in , 2009, 2009 24th Annual IEEE Conference on Computational Complexity.

[2]  Maung Nyan Win,et al.  Frameworks for programming biological function through RNA parts and devices. , 2009, Chemistry & biology.

[3]  Tan Inoue,et al.  Synthetic biology with RNA motifs. , 2009, The international journal of biochemistry & cell biology.

[4]  Xiaochen Bo,et al.  In Silico Genetic Robustness Analysis of Secondary Structural Elements in the miRNA Gene , 2008, Journal of Molecular Evolution.

[5]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[6]  Xiaochen Bo,et al.  In silico genetic robustness analysis of microRNA secondary structures: potential evidence of congruent evolution in microRNA , 2007, BMC Evolutionary Biology.

[7]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[8]  Zhiqiang Zheng,et al.  RSRE: RNA structural robustness evaluator , 2007, Nucleic Acids Res..

[9]  Rolf Backofen,et al.  INFO-RNA - a fast approach to inverse RNA folding , 2006, Bioinform..

[10]  L. Jaeger,et al.  The architectonics of programmable RNA and DNA nanostructures. , 2006, Current opinion in structural biology.

[11]  E. Borenstein,et al.  Direct evolution of genetic robustness in microRNA. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  James M Carothers,et al.  Solution structure of an informationally complex high-affinity RNA aptamer to GTP. , 2006, RNA.

[13]  N. Leontis,et al.  Controlling RNA self-assembly to form filaments , 2006, Nucleic acids research.

[14]  Xianglan Li,et al.  An efficient thermally induced RNA conformational switch as a framework for the functionalization of RNA nanostructures. , 2006, Journal of the American Chemical Society.

[15]  H. Kitano,et al.  Robustness trade-offs and host–microbial symbiosis in the immune system , 2006, Molecular systems biology.

[16]  Peixuan Guo RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy. , 2005, Journal of nanoscience and nanotechnology.

[17]  D. Endy Foundations for engineering biology , 2005, Nature.

[18]  J. Chin,et al.  Cellular logic with orthogonal ribosomes. , 2005, Journal of the American Chemical Society.

[19]  R. Weiss,et al.  Advances in synthetic biology: on the path from prototypes to applications. , 2005, Current opinion in biotechnology.

[20]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[21]  T. Schlick,et al.  In vitro RNA random pools are not structurally diverse: a computational analysis. , 2005, RNA.

[22]  Travis S. Bayer,et al.  Programmable ligand-controlled riboregulators of eukaryotic gene expression , 2005, Nature Biotechnology.

[23]  H. Hansma,et al.  Building Programmable Jigsaw Puzzles with RNA , 2004, Science.

[24]  Ronald R. Breaker,et al.  Natural and engineered nucleic acids as tools to explore biology , 2004, Nature.

[25]  J. Doyle,et al.  Metabolic syndrome and robustness tradeoffs. , 2004, Diabetes.

[26]  S. K. Desai,et al.  Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. , 2004, Journal of the American Chemical Society.

[27]  R. D'Amato,et al.  Exogenous control of mammalian gene expression through modulation of RNA self-cleavage , 2004, Nature.

[28]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[29]  J. Doyle,et al.  Bow Ties, Metabolism and Disease , 2022 .

[30]  David R. Liu,et al.  Engineering a ligand-dependent RNA transcriptional activator. , 2004, Chemistry & biology.

[31]  Farren J. Isaacs,et al.  Engineered riboregulators enable post-transcriptional control of gene expression , 2004, Nature Biotechnology.

[32]  James M. Carothers,et al.  Informational Complexity and Functional Activity of RNA Structures , 2004, Journal of the American Chemical Society.

[33]  Bin Liu,et al.  Characterization of tectoRNA assembly with cationic conjugated polymers. , 2004, Journal of the American Chemical Society.

[34]  B. Suess,et al.  A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. , 2004, Nucleic acids research.

[35]  Robert M. Dirks,et al.  Paradigms for computational nucleic acid design. , 2004, Nucleic acids research.

[36]  H. Kitano Cancer as a robust system: implications for anticancer therapy , 2004, Nature Reviews Cancer.

[37]  Ivo L. Hofacker,et al.  Vienna RNA secondary structure server , 2003, Nucleic Acids Res..

[38]  David R. Liu,et al.  In vivo evolution of an RNA-based transcriptional activator. , 2003, Chemistry & biology.

[39]  E. Lai RNA Sensors and Riboswitches: Self-Regulating Messages , 2003, Current Biology.

[40]  M. Ptashne,et al.  RNA sequences that work as transcriptional activating regions. , 2003, Nucleic acids research.

[41]  Andrew D Ellington,et al.  Group I aptazymes as genetic regulatory switches , 2002, BMC biotechnology.

[42]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[43]  P. Cossart,et al.  An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes , 2002, Cell.

[44]  G. Storz An Expanding Universe of Noncoding RNAs , 2002, Science.

[45]  J. Doyle,et al.  Reverse Engineering of Biological Complexity , 2002, Science.

[46]  C. Wilson,et al.  Inducible regulation of the S. cerevisiae cell cycle mediated by an RNA aptamer-ligand complex. , 2001, Bioorganic & medicinal chemistry.

[47]  Farren J. Isaacs,et al.  Computational studies of gene regulatory networks: in numero molecular biology , 2001, Nature Reviews Genetics.

[48]  Ravi Iyengar,et al.  Robustness of the bistable behavior of a biological signaling feedback loop. , 2001, Chaos.

[49]  P. Stadler,et al.  Design of multistable RNA molecules. , 2001, RNA.

[50]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[51]  R R Breaker,et al.  Nucleic acid molecular switches. , 1999, Trends in biotechnology.

[52]  S. Jayasena Aptamers: an emerging class of molecules that rival antibodies in diagnostics. , 1999, Clinical chemistry.

[53]  J C Cox,et al.  The complexities of DNA computation. , 1999, Trends in biotechnology.

[54]  Y. Kyōgoku,et al.  Translational induction of heat shock transcription factor sigma32: evidence for a built-in RNA thermosensor. , 1999, Genes & development.

[55]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[56]  M. Green,et al.  Controlling gene expression in living cells through small molecule-RNA interactions. , 1998, Science.

[57]  P. Babitzke,et al.  trp RNA-binding Attenuation Protein-mediated Long Distance RNA Refolding Regulates Translation of trpE inBacillus subtilis * , 1998, The Journal of Biological Chemistry.

[58]  M A Savageau,et al.  Demand theory of gene regulation. I. Quantitative development of the theory. , 1998, Genetics.

[59]  A. W. Czarnik,et al.  Binding of neomycin to the TAR element of HIV-1 RNA induces dissociation of Tat protein by an allosteric mechanism. , 1998, Biochemistry.

[60]  A E Dahlberg,et al.  A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. , 1997, Science.

[61]  C. Zwieb,et al.  Determinants of a protein-induced RNA switch in the large domain of signal recognition particle identified by systematic-site directed mutagenesis. , 1997, Nucleic acids research.

[62]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[63]  D M Crothers,et al.  Kinetics of an RNA conformational switch. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[64]  Walter Fontana,et al.  Fast folding and comparison of RNA secondary structures , 1994 .

[65]  C. Ehresmann,et al.  Conformational analysis of the 5' leader and the gag initiation site of Mo-MuLV RNA and allosteric transitions induced by dimerization. , 1993, Nucleic acids research.

[66]  D M Crothers,et al.  The Leptomonas collosoma spliced leader RNA can switch between two alternate structural forms. , 1993, Biochemistry.

[67]  T. Cech,et al.  Movement of the guide sequence during RNA catalysis by a group I ribozyme. , 1993, Science.

[68]  C. Ehresmann,et al.  Effect of dimerization on the conformation of the encapsidation Psi domain of Moloney murine leukemia virus RNA. , 1992, Journal of molecular biology.

[69]  W. Miller,et al.  Alternative tertiary structure attenuates self-cleavage of the ribozyme in the satellite RNA of barley yellow dwarf virus. , 1991, Nucleic acids research.

[70]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[71]  J. Ebel,et al.  Binding of initiation factor 2 and initiator tRNA to the Escherichia coli 30S ribosomal subunit induces allosteric transitions in 16S rRNA. , 1990, Biochemistry.

[72]  J. Szostak,et al.  In vitro selection of RNA molecules that bind specific ligands , 1990, Nature.

[73]  L. Gold,et al.  Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. , 1990, Science.

[74]  J. McCaskill The equilibrium partition function and base pair binding probabilities for RNA secondary structure , 1990, Biopolymers.

[75]  Gerald F. Joyce,et al.  Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA , 1990, Nature.

[76]  W. Wintermeyer,et al.  Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study. , 1983, Biochemistry.

[77]  C. Yanofsky,et al.  Transcript secondary structures regulate transcription termination at the attenuator of S. marcescens tryptophan operon , 1982, Nature.

[78]  R. Garrett,et al.  Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases. , 1982, Biochemistry.

[79]  Michael Zuker,et al.  Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information , 1981, Nucleic Acids Res..

[80]  R. Garrett,et al.  Chemical evidence for a codon-induced allosteric change in tRNALys involving the 7-methylguanosine residue 46. , 1979, European journal of biochemistry.

[81]  U. Schwarz,et al.  Codon-dependent rearrangement of the three-dimensional structure of phenylalanine tRNA, exposing the T-psi-C-G sequence for binding to the 50S ribosomal subunit. , 1976, Biochemistry.

[82]  C. Blomberg,et al.  Allosteric mechanism for codon-dependent tRNA selection on ribosomes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[83]  L. Hood,et al.  Reverse Engineering of Biological Complexity , 2007 .

[84]  Hiroaki Kitano,et al.  Biological robustness in complex host-pathogen systems. , 2007, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[85]  Torsten Waldminghaus,et al.  RNA thermometers. , 2006, FEMS microbiology reviews.

[86]  M. Wall,et al.  Design of gene circuits: lessons from bacteria , 2004, Nature Reviews Genetics.

[87]  Lauren Ancel Meyers,et al.  Aptamer Database , 2004, Nucleic Acids Res..

[88]  C. Guthrie,et al.  An RNA switch at the 5' splice site requires ATP and the DEAD box protein Prp28p. , 1999, Molecular cell.

[89]  Andrew Ellington,et al.  In vitro selection of an allosteric ribozyme that transduces analytes to amplicons , 1999, Nature Biotechnology.

[90]  J. Szostak,et al.  In vitro selection of functional nucleic acids. , 1999, Annual review of biochemistry.

[91]  M A Savageau,et al.  A theory of alternative designs for biochemical control systems. , 1985, Biomedica biochimica acta.

[92]  Savageau Ma,et al.  Mathematics of organizationally complex systems. , 1985 .

[93]  Savageau Ma,et al.  A theory of alternative designs for biochemical control systems. , 1985 .