Approximating Longest Cycles in Graphs with Bounded Degrees

Jackson and Wormald conjecture that if $G$ is a 3-connected $n$-vertex graph with maximum degree $d\ge 4$, then $G$ has a cycle of length $\Omega(n^{\log_{d-1}2})$. We show that this conjecture holds when $d-1$ is replaced by $\max\{64,4d+1\}$. Our proof implies a cubic algorithm for finding such a cycle.