Box Gaussian Mixture Filter $ $

This note presents the box Gaussian mixture filter (BGMF), which is an efficient filter for the systems with mainly linear measurements but enables utilizing highly nonlinear measurements. BGMF contains a new way to approximate the prior distributions with a Gaussian mixture, whose components have small covariances. In this note we present results on the weak convergence of BGMF. In simulations, we see that in our hybrid position example BGMF outperforms the conventional particle filter.

[1]  H. Sorenson,et al.  Nonlinear Bayesian estimation using Gaussian sum approximations , 1972 .

[2]  Petar M. Djuric,et al.  Gaussian sum particle filtering , 2003, IEEE Trans. Signal Process..

[3]  Niilo Sirola Mathematical Methods for Personal Positioning and Navigation , 2007 .

[4]  Harold W. Sorenson,et al.  Recursive Bayesian estimation using piece-wise constant approximations , 1988, Autom..

[5]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[6]  Simo Ali-Loytty,et al.  On the convergence of the Gaussian mixture filter , 2008 .

[7]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .

[8]  Uwe D. Hanebeck,et al.  Localization of DECT mobile phones based on a new nonlinear filtering technique , 2003, SPIE Defense + Commercial Sensing.

[9]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[10]  Robert Piche,et al.  Consistency of three Kalman filter extensions in hybrid navigation , 2005 .

[11]  N. Bergman Bayesian Inference in Terrain Navigation , 1997 .

[12]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[13]  Changlin Ma Integration of GPS and Cellular Networks to Improve Wireless Location Performance , 2003 .

[14]  R. Bucy,et al.  Digital synthesis of non-linear filters , 1971 .

[15]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[16]  Dan Simon,et al.  Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches , 2006 .

[17]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[18]  A New Particle Filter Tracking Algorithm For DOA Sensor Systems , 2007, 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007.

[19]  Simo Ali-Loytty,et al.  Gaussian Mixture Filters and Hybrid Positioning , 2007 .

[20]  Bayesian Filtering,et al.  Efficient Gaussian Mixture Filter for Hybrid Positioning , 2008 .

[21]  H. Sorenson,et al.  Recursive bayesian estimation using gaussian sums , 1971 .