Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems on Anisotropically Refined Meshes

In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of the solution. Based on our a posteriori error bound, we design and implement the corresponding adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement. The theoretical results are illustrated by a series of numerical experiments.

[1]  Timothy J. Barth,et al.  A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems , 2000 .

[2]  Weizhang Huang Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .

[3]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[4]  Ohannes A. Karakashian,et al.  Piecewise solenoidal vector fields and the Stokes problem , 1990 .

[5]  Ralf Hartmann,et al.  Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..

[6]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[7]  Michiel Hazewinkel,et al.  What Are Asymptotic Methods , 2002 .

[8]  Paul C. Fife,et al.  Second-Order Equations With Nonnegative Characteristic Form , 1973 .

[9]  Leszek Demkowicz,et al.  Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .

[10]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[11]  SwitzerlandPaul HoustonOxford,et al.  Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form , 1999 .

[12]  Endre Süli,et al.  Stabilised hp-Finite Element Approximation of Partial Differential Equations with Nonnegative Characteristic Form , 2001, Computing.

[13]  P. Jimack,et al.  Toward anisotropic mesh adaption based upon sensitivity of a posteriori estimates , 2022 .

[14]  P. Houston Stabilized hp { Finite Element Approximation of PartialDi erential Equations with Nonnegative Chara teristi Form , 2007 .

[15]  N SIAMJ. ON THE ERROR OF LINEAR INTERPOLATION AND THE ORIENTATION, ASPECT RATIO, AND INTERNAL ANGLES OF A TRIANGLE∗ , 2005 .

[16]  Endre Süli,et al.  Adaptive Finite Element Approximation of Hyperbolic Problems , 2003 .

[17]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[18]  Paul Houston,et al.  Adaptivity and A Posteriori Error Estimation For DG Methods on Anisotropic Meshes , 2006 .

[19]  Gerd Kunert,et al.  A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .

[20]  J. Oden,et al.  Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .

[21]  Emmanuil H. Georgoulis,et al.  A note on the design of hp-version interior penalty discontinuous Galerkin finite element methods for degenerate problems , 2006 .

[22]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[23]  Leszek Demkowicz,et al.  Toward a universal h-p adaptive finite element strategy , 1989 .

[24]  Endre Süli,et al.  hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. , 2002 .

[25]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[26]  Emmanuil H. Georgoulis hp-Version Interior Penalty Discontinuous Galerkin Finite Element Methods on Anisotropic Meshes ∗ , 2005 .

[27]  Frédéric Hecht,et al.  Anisotropic unstructured mesh adaption for flow simulations , 1997 .

[28]  Simona Perotto,et al.  New anisotropic a priori error estimates , 2001, Numerische Mathematik.

[29]  R. RannacherInstitut,et al.  Weighted a Posteriori Error Control in Fe Methods , 1995 .