Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems on Anisotropically Refined Meshes
暂无分享,去创建一个
[1] Timothy J. Barth,et al. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems , 2000 .
[2] Weizhang Huang. Mathematical Principles of Anisotropic Mesh Adaptation , 2006 .
[3] PAUL HOUSTON,et al. Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..
[4] Ohannes A. Karakashian,et al. Piecewise solenoidal vector fields and the Stokes problem , 1990 .
[5] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[6] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[7] Michiel Hazewinkel,et al. What Are Asymptotic Methods , 2002 .
[8] Paul C. Fife,et al. Second-Order Equations With Nonnegative Characteristic Form , 1973 .
[9] Leszek Demkowicz,et al. Toward a universal adaptive finite element strategy part 3. design of meshes , 1989 .
[10] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[11] SwitzerlandPaul HoustonOxford,et al. Hp-dgfem for Partial Diierential Equations with Nonnegative Characteristic Form , 1999 .
[12] Endre Süli,et al. Stabilised hp-Finite Element Approximation of Partial Differential Equations with Nonnegative Characteristic Form , 2001, Computing.
[13] P. Jimack,et al. Toward anisotropic mesh adaption based upon sensitivity of a posteriori estimates , 2022 .
[14] P. Houston. Stabilized hp { Finite Element Approximation of PartialDi erential Equations with Nonnegative Chara teristi Form , 2007 .
[15] N SIAMJ.. ON THE ERROR OF LINEAR INTERPOLATION AND THE ORIENTATION, ASPECT RATIO, AND INTERNAL ANGLES OF A TRIANGLE∗ , 2005 .
[16] Endre Süli,et al. Adaptive Finite Element Approximation of Hyperbolic Problems , 2003 .
[17] Paul Houston,et al. Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..
[18] Paul Houston,et al. Adaptivity and A Posteriori Error Estimation For DG Methods on Anisotropic Meshes , 2006 .
[19] Gerd Kunert,et al. A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes , 1999 .
[20] J. Oden,et al. Toward a universal h - p adaptive finite element strategy: Part 2 , 1989 .
[21] Emmanuil H. Georgoulis,et al. A note on the design of hp-version interior penalty discontinuous Galerkin finite element methods for degenerate problems , 2006 .
[22] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[23] Leszek Demkowicz,et al. Toward a universal h-p adaptive finite element strategy , 1989 .
[24] Endre Süli,et al. hp-Version discontinuous Galerkin methods with interior penalty for partial differential equations with nonnegative characteristic form. , 2002 .
[25] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[26] Emmanuil H. Georgoulis. hp-Version Interior Penalty Discontinuous Galerkin Finite Element Methods on Anisotropic Meshes ∗ , 2005 .
[27] Frédéric Hecht,et al. Anisotropic unstructured mesh adaption for flow simulations , 1997 .
[28] Simona Perotto,et al. New anisotropic a priori error estimates , 2001, Numerische Mathematik.
[29] R. RannacherInstitut,et al. Weighted a Posteriori Error Control in Fe Methods , 1995 .