Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses

[1]  K. H. Asay,et al.  Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences , 1995, Theoretical and Applied Genetics.

[2]  S. Muse Examining rates and patterns of nucleotide substitution in plants , 2004, Plant Molecular Biology.

[3]  Brandon S. Gaut,et al.  Evolution of genes and taxa: a primer , 2004, Plant Molecular Biology.

[4]  R. Gaut,et al.  Phylogenetic relationships and genetic diversity among members of theFestuca-Lolium complex (Poaceae) based on ITS sequence data , 2004, Plant Systematics and Evolution.

[5]  P. Soltis,et al.  Contributions of plant molecular systematics to studies of molecular evolution , 2004, Plant Molecular Biology.

[6]  R. Haselkorn,et al.  Chromosome mapping and phylogenetic analysis of the cytosolic acetyl-CoA carboxylase loci in wheat. , 2001, Molecular biology and evolution.

[7]  Paul G. Wolf,et al.  Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants , 2001, Nature.

[8]  J. Holtum,et al.  Dicotyledons lacking the multisubunit form of the herbicide-target enzyme acetyl coenzyme A carboxylase may be restricted to the family Geraniaceae , 2000 .

[9]  E. Kellogg,et al.  The Puelioideae, A New Subfamily of Poaceae , 2000 .

[10]  W. Zhang,et al.  Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data. , 2000, Molecular phylogenetics and evolution.

[11]  Karri M. Haen,et al.  Saturation mapping of a gene-rich recombination hot spot region in wheat. , 2000, Genetics.

[12]  E. Kellogg,et al.  Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B. , 2000, American journal of botany.

[13]  R. Prado,et al.  Propaquizafop Absorption, Translocation, Metabolism, and Effect on Acetyl-CoA Carboxylase Isoforms in Chickpea (Cicer arietinum L.) , 1999 .

[14]  E. Kellogg,et al.  Granule-bound starch synthase: structure, function, and phylogenetic utility. , 1998, Molecular biology and evolution.

[15]  B. Gaut,et al.  Speciation and domestication in maize and its wild relatives: evidence from the globulin-1 gene. , 1998, Genetics.

[16]  J. Dvorak,et al.  The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat , 1998, Theoretical and Applied Genetics.

[17]  Phillip SanMiguel,et al.  The paleontology of intergene retrotransposons of maize , 1998, Nature Genetics.

[18]  M. Gandolfo,et al.  Oldest known fossils of monocotyledons , 1998, Nature.

[19]  M. Hasegawa,et al.  Gene transfer to the nucleus and the evolution of chloroplasts , 1998, Nature.

[20]  M. P. Cummings,et al.  Nucleotide sequence diversity at the alcohol dehydrogenase 1 locus in wild barley (Hordeum vulgare ssp. spontaneum): an evaluation of the background selection hypothesis. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  A. Eyre-Walker,et al.  Investigation of the bottleneck leading to the domestication of maize. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  B. Gaut Molecular Clocks and Nucleotide Substitution Rates in Higher Plants , 1998 .

[23]  Ronald L. Phillips,et al.  Relationships of cereal crops and other grasses , 1998 .

[24]  K. Devos,et al.  Comparative genetics in the grasses. , 1998, Plant molecular biology.

[25]  K. Tsunewaki,et al.  Plasmon analyses of Triticum (wheat) and Aegilops: PCR-single-strand conformational polymorphism (PCR-SSCP) analyses of organellar DNAs. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Haselkorn,et al.  Plastid-localized acetyl-CoA carboxylase of bread wheat is encoded by a single gene on each of the three ancestral chromosome sets. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. S. Cox Deepening the wheat gene pool , 1997 .

[28]  R. Olmstead,et al.  Phylogeny of Poaceae subfamily Pooideae based on chloroplast ndhF gene sequences. , 1997, Molecular phylogenetics and evolution.

[29]  J. Bennetzen,et al.  Do Plants Have a One-Way Ticket to Genomic Obesity? , 1997, The Plant cell.

[30]  M T Clegg,et al.  The evolution of plant nuclear genes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[31]  W. Martin,et al.  The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis , 1997, Current Genetics.

[32]  S. Muse,et al.  Comparisons of the molecular evolutionary process at rbcL and ndhF in the grass family (Poaceae). , 1997, Molecular biology and evolution.

[33]  B. Gaut,et al.  DNA sequence evidence for the segmental allotetraploid origin of maize. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Muse,et al.  Comparing patterns of nucleotide substitution rates among chloroplast loci using the relative ratio test. , 1997, Genetics.

[35]  J. Bennetzen,et al.  Microcolinearity in sh2-homologous regions of the maize, rice, and sorghum genomes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Stracke,et al.  Multi-functional acetyl-CoA carboxylase from Brassica napus is encoded by a multi-gene family: indication for plastidic localization of at least one isoform. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  G. Petersen,et al.  Phylogenetic analysis of the Triticeae (Poaceae) based on rpoA sequence data. , 1997, Molecular phylogenetics and evolution.

[38]  J. Hall,et al.  Acetyl-Coenzyme A Carboxylase: Quaternary Structure and Inhibition by Graminicidal Herbicides , 1997 .

[39]  M. Clegg Plant Genetic Diversity and the Struggel to Measure Selection , 1997 .

[40]  M T Clegg,et al.  Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[41]  E. Kellogg,et al.  When Genes Tell Different Stories: the Diploid Genera of Triticeae (Gramineae) , 1996 .

[42]  R. Haselkorn,et al.  Structure of a gene encoding a cytosolic acetyl-CoA carboxylase of hexaploid wheat. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Wendel,et al.  A Phylogeny of the Grass Family (Poaceae) Based on ndhF Sequence Data , 1995 .

[44]  E. Harley,et al.  Polyphyly of Arundinoideae (Poaceae): Evidence from rbcL Sequence Data , 1995 .

[45]  T. Konishi,et al.  The Compartmentation of Acetyl-Coenzyme A Carboxylase in Plants , 1995, Plant physiology.

[46]  N. J. Chatterton,et al.  A molecular phylogeny of the subfamily Arundinoideae (Poaceae) based on sequences of rDNA , 1995 .

[47]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[48]  R. Haselkorn,et al.  Wheat acetyl-coenzyme A carboxylase: cDNA and protein structure. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  K. H. Asay,et al.  Phylogenetic relationships of 10 grass species: an assessment of phylogenetic utility of the internal transcribed spacer region in nuclear ribosomal DNA in monocots. , 1994, Genome.

[50]  J Dvorák,et al.  The evolution of polyploid wheats: identification of the A genome donor species. , 1993, Genome.

[51]  Peng Li,et al.  Relative-Rate Test for Nucleotide Substitutions between Two Lineages , 1992 .

[52]  W. Crepet,et al.  THE EARLIEST REMAINS OF GRASSES IN THE FOSSIL RECORD , 1991 .

[53]  J Dvorák,et al.  Variation in repeated nucleotide sequences sheds light on the phylogeny of the wheat B and G genomes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[54]  M. Gouy,et al.  Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Wen-Hsiung Li,et al.  Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[56]  E. R. Sears,et al.  THE ORIGIN OF TRITICUM SPELTA AND ITS FREE-THRESHING HEXAPLOID RELATIVES , 1946 .

[57]  E. R. Sears,et al.  The origin of Triticum spelta and its free-threshing hexaploid relatives. , 1946, The Journal of heredity.