Ocular gene therapy: a review of nonviral strategies.

[1]  D. Scherman,et al.  Plasmid electrotransfer of eye ciliary muscle: principles and therapeutic efficacy using hTNF‐α soluble receptor in uveitis , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[2]  Y. Courtois,et al.  Downregulation of IRS-1 expression causes inhibition of corneal angiogenesis. , 2005, Investigative ophthalmology & visual science.

[3]  I. Toth,et al.  Dendrimer delivery of an anti-VEGF oligonucleotide into the eye: a long-term study into inhibition of laser-induced CNV, distribution, uptake and toxicity , 2005, Gene Therapy.

[4]  C. Andrieu-Soler,et al.  Stable transmission of targeted gene modification using single-stranded oligonucleotides with flanking LNAs , 2005, Nucleic acids research.

[5]  I. Zagon,et al.  Particle-Mediated Gene Transfer of Opioid Growth Factor Receptor cDNA Regulates Cell Proliferation of the Corneal Epithelium , 2005, Cornea.

[6]  D. Vollrath,et al.  phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. , 2005, Investigative ophthalmology & visual science.

[7]  P. Campochiaro,et al.  Nonviral ocular gene transfer , 2005, Gene Therapy.

[8]  P. Jani,et al.  Flt-1 intraceptors inhibit hypoxia-induced VEGF expression in vitro and corneal neovascularization in vivo. , 2005, Investigative ophthalmology & visual science.

[9]  Xiaolan Chen,et al.  Chemical modification of gene silencing oligonucleotides for drug discovery and development. , 2005, Drug discovery today.

[10]  K. K. Kim,et al.  Lipid-mediated delivery of brain-specific angiogenesis inhibitor 1 gene reduces corneal neovascularization in an in vivo rabbit model , 2005, Gene Therapy.

[11]  Y. Courtois,et al.  VP22 light controlled delivery of oligonucleotides to ocular cells in vitro and in vivo. , 2005, Molecular vision.

[12]  S. Kügler,et al.  Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. , 2005, Brain : a journal of neurology.

[13]  J. Irache,et al.  Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. , 2005, Mini reviews in medicinal chemistry.

[14]  H. Cohen,et al.  Nanoparticles for gene delivery to retinal pigment epithelial cells. , 2005, Molecular vision.

[15]  F. Rolling,et al.  Biodistribution of rAAV vectors following intraocular administration: evidence for the presence and persistence of vector DNA in the optic nerve and in the brain. , 2005, Molecular therapy : the journal of the American Society of Gene Therapy.

[16]  Raymond M Schiffelers,et al.  Inhibition of ocular angiogenesis by siRNA targeting vascular endothelial growth factor pathway genes: therapeutic strategy for herpetic stromal keratitis. , 2004, The American journal of pathology.

[17]  L. Reneker,et al.  Targeted gene expression in the chicken eye by in ovo electroporation. , 2004, Molecular vision.

[18]  J. Pulido,et al.  RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. , 2004, Molecular vision.

[19]  H. Ohguro,et al.  Effects of matrix metalloproteinase-3 gene transfer by electroporation in glaucoma filter surgery. , 2004, Experimental eye research.

[20]  J. Wengel,et al.  Locked nucleic acid: a potent nucleic acid analog in therapeutics and biotechnology. , 2004, Oligonucleotides.

[21]  J. Nickerson,et al.  Scleral permeability of a small, single-stranded oligonucleotide. , 2004, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[22]  G. De Rosa,et al.  Gel and solid matrix systems for the controlled delivery of drug carrier-associated nucleic acids. , 2004, International journal of pharmaceutics.

[23]  A. Heiligenhaus,et al.  Topical treatment with antisense oligonucleotides targeting tumor necrosis factor-alpha in herpetic stromal keratitis. , 2003, Investigative ophthalmology & visual science.

[24]  C. Cepko,et al.  Electroporation and RNA interference in the rodent retina in vivo and in vitro , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  F. Behar-Cohen,et al.  [The use of liposomes as intravitreal drug delivery system]. , 2003, Journal francais d'ophtalmologie.

[26]  J. Boatright,et al.  Delivery of several forms of DNA, DNA-RNA hybrids, and dyes across human sclera by electrical fields. , 2003, Molecular vision.

[27]  Jian Yi Li,et al.  Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. , 2003, Molecular vision.

[28]  Wen-zhen Yu,et al.  Gene Transfer of Kringle 5 of Plasminogen by Electroporation Inhibits Corneal Neovascularization , 2003, Ophthalmic Research.

[29]  Robert Gurny,et al.  Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. , 2003, Investigative ophthalmology & visual science.

[30]  P. Campochiaro,et al.  Intraocular expression of endostatin reduces VEGF‐induced retinal vascular permeability, neovascularization, and retinal detachment , 2003, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  S. Isenmann,et al.  HSV-1 VP22 augments adenoviral gene transfer to CNS neurons in the retina and striatum in vivo. , 2003, Molecular therapy : the journal of the American Society of Gene Therapy.

[32]  K. Yamashiro,et al.  VEGF164 is proinflammatory in the diabetic retina. , 2003, Investigative ophthalmology & visual science.

[33]  Siqing Shan,et al.  Inhibition of rat corneal angiogenesis by a nuclease-resistant RNA aptamer specific for angiopoietin-2 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Y. Courtois,et al.  Delivery of antisense oligonucleotide to the cornea by iontophoresis. , 2003, Antisense & nucleic acid drug development.

[35]  K. Hayashi,et al.  Effect of Herpes Simplex Virus‐1 gD or gD‐IL‐2 DNA Vaccine on Herpetic Keratitis , 2002, Cornea.

[36]  W. Pardridge,et al.  Widespread expression of an exogenous gene in the eye after intravenous administration. , 2002, Investigative ophthalmology & visual science.

[37]  D. Archer,et al.  The inflammatory milieu associated with conjunctivalized cornea and its alteration with IL-1 RA gene therapy. , 2002, Investigative ophthalmology & visual science.

[38]  Y. Courtois,et al.  Down-regulation of NOSII gene expression by iontophoresis of anti-sense oligonucleotide in endotoxin-induced uveitis. , 2002, Biochemical and biophysical research communications.

[39]  T. Oshitari,et al.  Rescue of axotomized retinal ganglion cells by BDNF gene electroporation in adult rats. , 2002, Investigative ophthalmology & visual science.

[40]  Lawrence A. Yannuzzi,et al.  PRECLINICAL AND PHASE 1A CLINICAL EVALUATION OF AN ANTI-VEGF PEGYLATED APTAMER (EYE001) FOR THE TREATMENT OF EXUDATIVE AGE-RELATED MACULAR DEGENERATION , 2002, Retina.

[41]  B. Gazzard,et al.  Randomized dose-comparison studies of intravitreous fomivirsen for treatment of cytomegalovirus retinitis that has reactivated or is persistently active despite other therapies in patients with AIDS. , 2002, American journal of ophthalmology.

[42]  B. Gazzard,et al.  Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS. , 2002, American journal of ophthalmology.

[43]  R. Ali,et al.  Inhibition of retinal neovascularisation by gene transfer of soluble VEGF receptor sFlt-1 , 2002, Gene Therapy.

[44]  I. Constable,et al.  Preclinical Evaluation of a Phosphorothioate Oligonucleotide in the Retina of Rhesus Monkey , 2002, Laboratory Investigation.

[45]  H. Inomata,et al.  Targeted gene transfer to corneal stroma in vivo by electric pulses. , 2002, Experimental eye research.

[46]  D. Carr,et al.  Topical application of the cornea post-infection with plasmid DNA encoding interferon-α1 but not recombinant interferon-αA reduces herpes simplex virus type 1-induced mortality in mice , 2001, Journal of Neuroimmunology.

[47]  P. Campochiaro,et al.  Clinical protocol. An open-label, phase I, single administration, dose-escalation study of ADGVPEDF.11D (ADPEDF) in neovascular age-related macular degeneration (AMD). , 2001, Human gene therapy.

[48]  W. Shen,et al.  Uptake dynamics and retinal tolerance of phosphorothioate oligonucleotide and its direct delivery into the site of choroidal neovascularization through subretinal administration in the rat. , 2001, Antisense & nucleic acid drug development.

[49]  R. D'Amato,et al.  Rapid ocular angiogenic control via naked DNA delivery to cornea. , 2001, Investigative ophthalmology & visual science.

[50]  W. Shen,et al.  In vivo use of oligonucleotides to inhibit choroidal neovascularisation in the eye , 2001, The journal of gene medicine.

[51]  J. Liaw,et al.  In vivo gene delivery into ocular tissues by eye drops of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) polymeric micelles , 2001, Gene Therapy.

[52]  P. Campochiaro,et al.  Inhibition of choroidal neovascularization by intravenous injection of adenoviral vectors expressing secretable endostatin. , 2001, The American journal of pathology.

[53]  H. V. van Leeuwen,et al.  Particle Formation by a Conserved Domain of the Herpes Simplex Virus Protein VP22 Facilitating Protein and Nucleic Acid Delivery* 210 , 2001, The Journal of Biological Chemistry.

[54]  Jean Bennett,et al.  Gene therapy restores vision in a canine model of childhood blindness , 2001, Nature Genetics.

[55]  Joyce Nelson,et al.  Pharmacokinetics and Safety of an Anti-Vascular Endothelial Growth Factor Aptamer (NX1838) Following Injection into the Vitreous Humor of Rhesus Monkeys , 2000, Pharmaceutical Research.

[56]  M. F. Smith,et al.  Enhanced short-term plasmid transfection of filtration surgery tissues. , 2000, Investigative ophthalmology & visual science.

[57]  Y. Tano,et al.  Preventive effect of local plasmid DNA vaccine encoding gD or gD-IL-2 on herpetic keratitis. , 2000, Investigative ophthalmology & visual science.

[58]  B. Dvorchik,et al.  Disposition and toxicity of a mixed backbone antisense oligonucleotide, targeted against human cytomegalovirus, after intravitreal injection of escalating single doses in the rabbit. , 2000, Drug metabolism and disposition: the biological fate of chemicals.

[59]  L. Berghe,et al.  Ocular cell transfection with the human basic fibroblast growth factor gene delays photoreceptor cell degeneration in RCS rats. , 2000, Human gene therapy.

[60]  D. Carr,et al.  Therapeutic efficacy of DNA encoding IFN-a1 against corneal HSV-1 infection , 2000 .

[61]  K. Nakagawa,et al.  Target gene transfer of tissue plasminogen activator to cornea by electric pulse inhibits intracameral fibrin formation and corneal cloudiness. , 1999, Human gene therapy.

[62]  I. Constable,et al.  Dynamics of phosphorothioate oligonucleotides in normal and laser photocoagulated retina , 1999, The British journal of ophthalmology.

[63]  M. Bähr,et al.  Bax antisense oligonucleotides reduce axotomy-induced retinal ganglion cell death in vivo by reduction of Bax protein expression , 1999, Cell Death and Differentiation.

[64]  A. Kabanov,et al.  Reduction of fibronectin expression by intravitreal administration of antisense oligonucleotides , 1999, Nature Biotechnology.

[65]  I. Campbell,et al.  Ectopic expression of DNA encoding IFN-alpha 1 in the cornea protects mice from herpes simplex virus type 1-induced encephalitis. , 1999, Journal of immunology.

[66]  T. Nishi,et al.  Targeted gene transfer to corneal endothelium in vivo by electric pulse , 1998, Gene Therapy.

[67]  A. Levin,et al.  Pharmacokinetics of an antisense oligonucleotide injected intravitreally in monkeys. , 1998, Drug metabolism and disposition: the biological fate of chemicals.

[68]  Y. Kaneda,et al.  Introduction of DNA into the rat and primate trabecular meshwork by fusogenic liposomes. , 1998, Investigative ophthalmology & visual science.

[69]  Y. Kaneda,et al.  In vivo delivery of phosphorothioate oligonucleotides into murine retina. , 1998, Archives of ophthalmology.

[70]  A. Kennan,et al.  Strategems in vitro for gene therapies directed to dominant mutations. , 1997, Human molecular genetics.

[71]  S. Johnston,et al.  Controlled gene gun delivery and expression of DNA within the cornea. , 1997, BioTechniques.

[72]  B. Rouse,et al.  Suppression of ongoing ocular inflammatory disease by topical administration of plasmid DNA encoding IL-10. , 1997, Journal of immunology.

[73]  A. Zutshi,et al.  Pharmacokinetics of a potential human cytomegalovirus therapeutic, a phosphorothioate oligonucleotide, after intravitreal injection in the rabbit. , 1997, Drug metabolism and disposition: the biological fate of chemicals.

[74]  増田 郁也 Gene transfer with liposomes to the intraocular tissues by different routes of administration , 1997 .

[75]  Jean Bennett,et al.  Photoreceptor cell rescue in retinal degeneration (rd) mice by in vivo gene therapy , 1996, Nature Medicine.

[76]  Lois E. H. Smith,et al.  Oligodeoxynucleotides inhibit retinal neovascularization in a murine model of proliferative retinopathy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[77]  T. Matsuo,et al.  Gene transfer to the retina of rat by liposome eye drops. , 1996, Biochemical and biophysical research communications.

[78]  G. Trainor,et al.  Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. , 1994, Molecular pharmacology.

[79]  石川 裕人 Effect of GDNF gene transfer into axotomized retinal ganglion cells using in vivo electroporation with a contact lens-type electrode , 2006 .

[80]  F. Choy,et al.  RNA interference: past, present and future. , 2005, Current issues in molecular biology.

[81]  J. Pulido,et al.  RNA interference targeting transforming growth factor-β type II receptor suppresses ocular inflammation and fibrosis , 2004 .

[82]  P. Khaw,et al.  Novel antisense oligonucleotides targeting TGF-β inhibit in vivo scarring and improve surgical outcome , 2003, Gene Therapy.

[83]  P. Couvreur,et al.  Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. , 2002, Investigative ophthalmology & visual science.

[84]  T. Oshitari,et al.  Gene transfer into retinal ganglion cells by in vivo electroporation: a new approach. , 2002, Micron.

[85]  D. Dean,et al.  High‐level gene transfer to the cornea using electroporation , 2002, The journal of gene medicine.

[86]  Y. Kalia,et al.  Post-iontophoresis recovery of human skin impedance in vivo. , 2002, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[87]  M. Cornish,et al.  A randomized controlled clinical trial of intravitreous fomivirsen for treatment of newly diagnosed peripheral cytomegalovirus retinitis in patients with AIDS. , 2002, American journal of ophthalmology.

[88]  G. Study Randomized dose-comparison studies of intravitreous fomivirsen for treatment of cytomegalovirus retinitis that has reactivated or is persistently active despite other therapies in patients with AIDS , 2002 .

[89]  G. Study Safety of intravitreous fomivirsen for treatment of cytomegalovirus retinitis in patients with AIDS , 2002 .

[90]  H. Shiota,et al.  Induction of gene into the rabbit eye by iontophoresis: preliminary report. , 2001, Japanese journal of ophthalmology.

[91]  D. Carr,et al.  Therapeutic efficacy of DNA encoding IFN-alpha1 against corneal HSV-1 infection. , 2000, Current eye research.

[92]  Y. Kaneda,et al.  Phosphorothioate oligonucleotides induction into experimental choroidal neovascularization by HVJ-liposome system. , 1999, Current eye research.

[93]  P. Couvreur,et al.  Comparison of the ocular distribution of a model oligonucleotide after topical instillation in rabbits of conventional and new dosage forms. , 1998, Journal of drug targeting.

[94]  S. Sharma,et al.  Axon-mediated gene transfer of retinal ganglion cells in vivo. , 1997, Journal of neurobiology.

[95]  I. Constable,et al.  Targeted delivery of an antisense oligonucleotide in the retina: uptake, distribution, stability, and effect. , 1996, Antisense & nucleic acid drug development.