Multivariate Stochastic Volatility via Wishart Processes

Financial models for asset and derivatives pricing, risk management, portfolio optimization, and asset allocation rely on volatility forecasts. Time-varying volatility models, such as generalized autoregressive conditional heteroscedasticity and stochastic volatility (SVOL), have been successful in improving forecasts over constant volatility models. We develop a new multivariate SVOL framework for modeling financial data that assumes covariance matrices stochastically varying through a Wishart process. In our formulation, scalar variances naturally extend to covariance matrices rather than to vectors of variances as in traditional SVOL models. Model fitting is performed using Markov chain Monte Carlo simulation from the posterior distribution. Because of the model's complexity, an efficiently designed Gibbs sampler is described that produces inferences with a manageable amount of computation. Our approach is illustrated on a multivariate time series of monthly industry portfolio returns. A test of the economic value of our model found that minimum-variance portfolios based on our SVOL covariance forecasts outperformed out-of-sample portfolios based on alternative covariance models, such as dynamic conditional correlations and factor-based covariances.

[1]  C. Siegel,et al.  Uber Die Analytische Theorie Der Quadratischen Formen III , 1935 .

[2]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[3]  Edwin Diamond,et al.  Good News, Bad News , 1978 .

[4]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[5]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[6]  Professors Engle,et al.  MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT , 1986 .

[7]  Francis X. Dieobold Modeling The persistence Of Conditional Variances: A Comment , 1986 .

[8]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[9]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[10]  Stephen L Taylor,et al.  Modelling Financial Time Series , 1987 .

[11]  J. Wooldridge,et al.  A Capital Asset Pricing Model with Time-Varying Covariances , 1988, Journal of Political Economy.

[12]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[13]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[14]  M. Best,et al.  On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results , 1991 .

[15]  John Geweke,et al.  Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments , 1991 .

[16]  Daniel B. Nelson CONDITIONAL HETEROSKEDASTICITY IN ASSET RETURNS: A NEW APPROACH , 1991 .

[17]  Nicholas G. Polson,et al.  A Monte Carlo Approach to Nonnormal and Nonlinear State-Space Modeling , 1992 .

[18]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[19]  J. Q. Smith,et al.  1. Bayesian Statistics 4 , 1993 .

[20]  W. Ziemba,et al.  The Effect of Errors in Means, Variances, and Covariances on Optimal Portfolio Choice , 1993 .

[21]  Tim Bollerslev,et al.  COMMON PERSISTENCE IN CONDITIONAL VARIANCES , 1993 .

[22]  Stephen L Taylor,et al.  MODELING STOCHASTIC VOLATILITY: A REVIEW AND COMPARATIVE STUDY , 1994 .

[23]  Peter E. Rossi,et al.  Bayesian Analysis of Stochastic Volatility Models , 1994 .

[24]  R. Kohn,et al.  On Gibbs sampling for state space models , 1994 .

[25]  R. Mahieu,et al.  Stochastic volatility and the distribution of exchange rate news , 1994 .

[26]  Daniel B. Nelson,et al.  ARCH MODELS a , 1994 .

[27]  Tim Bollerslev,et al.  Chapter 49 Arch models , 1994 .

[28]  N. Shephard,et al.  Multivariate stochastic variance models , 1994 .

[29]  Daniel B. Nelson,et al.  Good News, Bad News, Volatility, and Betas , 1995 .

[30]  Robert F. Engle,et al.  ARCH: Selected Readings , 1995 .

[31]  J. Geweke,et al.  Measuring the pricing error of the arbitrage pricing theory , 1996 .

[32]  T. Andersen Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility , 1996 .

[33]  Bent E. Sørensen,et al.  GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study , 1996 .

[34]  N. Shephard Statistical aspects of ARCH and stochastic volatility , 1996 .

[35]  H. Uhlig Bayesian vector autoregressions with stochastic volatility , 1997 .

[36]  Michael S. Gibson,et al.  Pitfalls in Tests for Changes in Correlations , 1997 .

[37]  M. Pitt,et al.  Time Varying Covariances: A Factor Stochastic Volatility Approach (with discussion , 1998 .

[38]  T. Andersen THE ECONOMETRICS OF FINANCIAL MARKETS , 1998, Econometric Theory.

[39]  Philippe Jorion,et al.  Risk Management Lessons from Long-Term Capital Management , 1999 .

[40]  G. Jiang,et al.  Index Option Pricing Models with Stochastic Volatility and Stochastic Interest Rates , 2000 .

[41]  Bent E. Sørensen,et al.  Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study , 1999 .

[42]  B. Jørgensen,et al.  A state-space model for multivariate longitudinal count data , 1999 .

[43]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .

[44]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[45]  M. West,et al.  Bayesian Dynamic Factor Models and Portfolio Allocation , 2000 .

[46]  M. Evans Statistical Distributions , 2000 .

[47]  Andrew J. Patton,et al.  What good is a volatility model? , 2001 .

[48]  Luca Benzoni,et al.  An Empirical Investigation of Continuous-Time Equity Return Models , 2001 .

[49]  E. Jacquier,et al.  Asset Allocation Models and Market Volatility , 2001 .

[50]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[51]  Pedro Santa-Clara,et al.  Flexible Multivariate GARCH Modeling with an Application to International Stock Markets , 1999, Review of Economics and Statistics.

[52]  Ioanid Roşu Graduate School of Business University of Chicago , 2005 .

[53]  N. Shephard,et al.  Analysis of high dimensional multivariate stochastic volatility models , 2006 .