Special Issue on Plasma Propulsion

The 25 papers in this special issue address plasma science aspects in several key directions of modern plasma propulsion. The issue consists primarily of papers presented at major international forums such as the International Electric Propulsion Conference and the AIAA/SAE/ASEE Joint Propulsion Conference in recent years.

[1]  J. Foster,et al.  A Magnetically Enhanced Inductive Discharge Chamber for Electric Propulsion Applications , 2008, IEEE Transactions on Plasma Science.

[2]  Jason Cassibry Comparison of Directly and Inductively Coupled Pulsed Electromagnetic Thrusters , 2008 .

[3]  A. Smolyakov,et al.  Kinetic effects in a Hall thruster discharge , 2006 .

[4]  I. Beilis,et al.  Modeling of a Microscale Short Vacuum Arc for a Space Propulsion Thruster , 2008, IEEE Transactions on Plasma Science.

[5]  W. Hargus,et al.  Ion Velocity Measurements Within the Acceleration Channel of a Low-Power Hall Thruster , 2008, IEEE Transactions on Plasma Science.

[6]  R. Burton,et al.  Charging of Macroparticles in a Pulsed Vacuum Arc Discharge , 2008, IEEE Transactions on Plasma Science.

[7]  M. Keidar,et al.  Electron transport phenomena in plasma devices with E/spl times/B drift , 2006, IEEE Transactions on Plasma Science.

[8]  A. Anders,et al.  A Theoretical Analysis of Vacuum Arc Thruster and Vacuum Arc Ion Thruster Performance , 2008, IEEE Transactions on Plasma Science.

[9]  I. Katz,et al.  Insert Heating and Ignition in Inert-Gas Hollow Cathodes , 2008, IEEE Transactions on Plasma Science.

[10]  R. Wirz,et al.  Effects of Internally Mounted Cathodes on Hall Thruster Plume Properties , 2008, IEEE Transactions on Plasma Science.

[11]  D. Goebel,et al.  Analytical Discharge Model for RF Ion Thrusters , 2008, IEEE Transactions on Plasma Science.

[12]  L. Garrigues,et al.  Simulations of a Miniaturized Cylindrical Hall Thruster , 2008, IEEE Transactions on Plasma Science.

[13]  V. Krasnoselskikh,et al.  Experimental Insights Into High-Frequency Instabilities and Related Anomalous Electron Transport in Hall Thrusters , 2008, IEEE Transactions on Plasma Science.

[14]  N. Fisch,et al.  Parametric investigations of a nonconventional Hall thruster , 2001 .

[15]  L. B. King,et al.  An Electron Trap for Studying Cross-Field Mobility in Hall Thrusters , 2008, IEEE Transactions on Plasma Science.

[16]  T. Grundy,et al.  Progress in Astronautics and Aeronautics , 2001 .

[17]  L. Garrigues,et al.  Physics, simulation and diagnostics of Hall effect thrusters , 2008 .

[18]  G. Appelbaum,et al.  Investigation of Improved Hall Thruster Configurations for Low-Power Operation , 2008, IEEE Transactions on Plasma Science.

[19]  F.F. Chen,et al.  Permanent Magnet Helicon Source for Ion Propulsion , 2008, IEEE Transactions on Plasma Science.

[20]  V. Kim Main Physical Features and Processes Determining the Performance of Stationary Plasma Thrusters , 1998 .

[21]  M. Cappelli,et al.  Shear-Based Model for Electron Transport in Hybrid Hall Thruster Simulations , 2008, IEEE Transactions on Plasma Science.

[22]  E. Ahedo,et al.  Partial trapping of secondary-electron emission in a Hall thruster plasma , 2005 .

[23]  A. Morozov,et al.  Fundamentals of Stationary Plasma Thruster Theory , 2000 .

[24]  J. Adam,et al.  Study of stationary plasma thrusters using two-dimensional fully kinetic simulations , 2004 .

[25]  K.A. Polzin Scaling and Systems Considerations in Pulsed Inductive Plasma Thrusters , 2008, IEEE Transactions on Plasma Science.

[26]  M. Guelman,et al.  Low-Frequency Instability in Near-Anode Region of Hall Thruster , 2008, IEEE Transactions on Plasma Science.

[27]  A. Gany,et al.  The Effect of Pressure on the Plume Divergence in the Hall Thruster , 2008, IEEE Transactions on Plasma Science.

[28]  Michael Keidar,et al.  Magnetically enhanced vacuum arc thruster , 2005 .

[29]  F. F. Gabdullin,et al.  The Plasma Plume Emitted Onboard the International Space Station Under the Effect of the Geomagnetic Field , 2008, IEEE Transactions on Plasma Science.

[30]  I. Katz,et al.  Decel Grid Effects on Ion Thruster Grid Erosion , 2008, IEEE Transactions on Plasma Science.

[31]  S. Mazouffre,et al.  $\hbox{Xe}^{+}$ Ion Transport in the Crossed-Field Discharge of a 5-kW-Class Hall Effect Thruster , 2008, IEEE Transactions on Plasma Science.

[32]  N. Fisch,et al.  Controlling the Plasma Flow in the Miniaturized Cylindrical Hall Thruster , 2008, IEEE Transactions on Plasma Science.

[33]  R. S. Robinson,et al.  Physics of closed drift thrusters , 1999 .

[34]  C. Charles,et al.  Effect of Exhaust Magnetic Field in a Helicon Double-Layer Thruster Operating in Xenon , 2008, IEEE Transactions on Plasma Science.

[35]  I. Katz,et al.  Ion Current in Hall Thrusters , 2008, IEEE Transactions on Plasma Science.

[36]  E. Ahedo,et al.  Two-Dimensional Electron Model for a Hybrid Code of a Two-Stage Hall Thruster , 2008, IEEE Transactions on Plasma Science.

[37]  A. Smolyakov,et al.  Kinetic simulation of secondary electron emission effects in Hall thrusters , 2006 .

[38]  R. Schneider,et al.  Kinetic simulations of a plasma thruster , 2008 .

[39]  H. Wilhelmsson,et al.  Review of plasma physics: Vol. 1 (ed. M. A. Leontovich, Consultants Bureau, New York, 1965) pp. 326, $ 12.50 , 1966 .