Contraction analysis of switched systems: the case of Caratheodory Systems and Networks

Department of Engineering Mathematics, University of Bristol, BS8 1TR,Bristol, U.K. {m.dibernardo@bristol.ac.uk}AbstractIn this paper we extend to a generic class of piecewise smooth dynamical systems afundamental tool for the analysis of convergence of smooth dynamical systems: con-traction theory. We focus on switched systems satisfying Caratheodory conditionsfor the existence and unicity of a solution. After generalizing the classical definitionof contraction to this class of dynamical systems, we give sufficient conditions forglobal exponential convergence of their trajectories. The theoretical results are thenapplied to solve a set of representative problems including proving global asymp-totic stability of switched linear systems, giving conditions for incremental stabilityof piecewise smooth systems, and analyzing the convergence of networked switchedlinear systems.

[1]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .

[2]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[3]  T. Ström On Logarithmic Norms , 1975 .

[4]  G. Dahlquist Stability and error bounds in the numerical integration of ordinary differential equations , 1961 .

[5]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[6]  H. Nijmeijer,et al.  Convergent piecewise affine systems: analysis and design Part II: discontinuous case , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[7]  Mario di Bernardo,et al.  A Graphical Approach to Prove Contraction of Nonlinear Circuits and Systems , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[9]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[10]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[11]  Giovanni Russo,et al.  Global convergence of quorum-sensing networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[13]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[14]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[15]  Nathan van de Wouw,et al.  Convergent discrete-time nonlinear systems: The case of PWA systems , 2008, 2008 American Control Conference.

[16]  J. Slotine,et al.  Symmetries, stability, and control in nonlinear systems and networks. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Mario di Bernardo,et al.  Solving the rendezvous problem for multi-agent systems using contraction theory , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[18]  W. Lohmiller,et al.  Contraction analysis of non-linear distributed systems , 2005 .

[19]  Enrique Ponce,et al.  The continuous matching of two stable linear systems can be unstable , 2006 .

[20]  Jean-Jacques E. Slotine,et al.  Compositional Contraction Analysis of Resetting Hybrid Systems , 2006, IEEE Transactions on Automatic Control.

[21]  J. Jouffroy Some ancestors of contraction analysis , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[22]  Nathan van de Wouw,et al.  On convergence properties of piecewise affine systems , 2007, Int. J. Control.

[23]  Mario di Bernardo,et al.  On Contraction of Piecewise Smooth Dynamical Systems , 2011 .

[24]  Roy D. Williams,et al.  Error estimation for numerical differential equations , 1996 .

[25]  Hai Lin,et al.  Stability and Stabilizability of Switched Linear Systems: A Survey of Recent Results , 2009, IEEE Transactions on Automatic Control.

[26]  Jean-Jacques E. Slotine,et al.  Nonlinear process control using contraction theory , 2000 .

[27]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[28]  Alessandro Astolfi,et al.  Stability of Dynamical Systems - Continuous, Discontinuous, and Discrete Systems (by Michel, A.N. et al.; 2008) [Bookshelf] , 2007, IEEE Control Systems.

[29]  M. Arcak On spatially uniform behavior in reaction-diffusion PDE and coupled ODE systems , 2009, 0908.2614.

[30]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[31]  Eduardo D. Sontag,et al.  Mathematical control theory: deterministic finite dimensional systems (2nd ed.) , 1998 .

[32]  Mario di Bernardo,et al.  How to Synchronize Biological Clocks , 2009, J. Comput. Biol..

[33]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[34]  Vipul Periwal,et al.  System Modeling in Cellular Biology: From Concepts to Nuts and Bolts , 2006 .

[35]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[36]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[37]  Jean-Jacques E. Slotine,et al.  Contractionanalysis of synchronization innetworksof nonlinearly coupledoscillators , 2004 .

[38]  P. Hartman On Stability in the Large for Systems of Ordinary Differential Equations , 1961, Canadian Journal of Mathematics.

[39]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[40]  A. Michel,et al.  Stability of Dynamical Systems — Continuous , Discontinuous , and Discrete Systems , 2008 .

[41]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .