On Stochastic Conditional Independence: the Problems of Characterization and Description

The topic of this survey are structures of stochastic conditional independence. Two basic questions are dealt with: the problem of characterization of conditional independence models and the problem of their mathematical description and computer representation. Basic formal properties of conditional independence are recapitulated and the problem of axiomatic characterization of stochastic conditional independence models is mentioned. Classic graphical methods of description of these structures are recalled, in particular, the method which uses chain graphs. Limitation of graphical approaches motivated an attempt at a non-graphical approach. A certain method of description of stochastic conditional independence models which uses non-graphical tools called ‘structural imsets’ is outlined.

[1]  Milan Studený,et al.  Chain graphs: semantics and expressiveness , 1995, ECSQARU.

[2]  Frantisek Matús Stochastic Independence, Algebraic Independence and Abstract Connectedness , 1994, Theor. Comput. Sci..

[3]  Francesco M. Malvestuto,et al.  Comment on "A unique formal system for binary decompositions of database relations, probability distributions, and graphs" , 1992, Inf. Sci..

[4]  Michel Mouchart,et al.  A note on conditional independence , 1984 .

[5]  Judea Pearl,et al.  GRAPHOIDS: A Graph-based logic for reasoning about relevance relations , 1985 .

[6]  A. Dawid Conditional Independence in Statistical Theory , 1979 .

[7]  Elliott Mendelson,et al.  Introduction to mathematical logic (3. ed.) , 1987 .

[9]  Milan Studeny,et al.  Conditional independence relations have no finite complete characterization , 1992 .

[10]  Uwe Franz What is Stochastic Independence , 2002 .

[11]  František Matúš,et al.  Conditional Independences among Four Random Variables III: Final Conclusion , 1999, Combinatorics, probability & computing.

[12]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[13]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[14]  D. Madigan,et al.  A characterization of Markov equivalence classes for acyclic digraphs , 1997 .

[15]  Wolfgang Spohn,et al.  Stochastic independence, causal independence, and shieldability , 1980, J. Philos. Log..

[16]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[17]  Jean-Pierre Florens,et al.  Elements of Bayesian Statistics , 1990 .

[18]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[19]  Milan Studený Formal Properties of Conditional Independence in Different Calculi of AI , 1993, ECSQARU.

[20]  Milan Studený,et al.  Semigraphoids Are Two-Antecedental Approximations of Stochastic Conditional Independence Models , 1994, UAI.

[21]  M. Studen,et al.  Ci{models Arising among 4 Random Variables , 2015 .

[22]  B. C. Brookes,et al.  Information Sciences , 2020, Cognitive Skills You Need for the 21st Century.

[23]  Francesco M. Malvestuto,et al.  A hypergraph-theoretic analysis of collapsibility and decomposability for extended log-linear models , 2001, Stat. Comput..

[24]  Dan Geiger,et al.  Identifying independence in bayesian networks , 1990, Networks.

[25]  S. Lauritzen,et al.  Mixed graphical association models; discussions and reply , 1989 .

[26]  J. Koster,et al.  Markov properties of nonrecursive causal models , 1996 .

[28]  Milan Studený,et al.  Conditional Independences among Four Random Variables I , 1995, Combinatorics, Probability and Computing.

[29]  Giulianella Coletti,et al.  Zero probabilities in stochastic independence , 2000 .

[30]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[31]  Elliott Mendelson,et al.  Introduction to Mathematical Logic , 1979 .

[32]  Milan Studený,et al.  Semigraphoids and structures of probabilistic conditional independence , 1997, Annals of Mathematics and Artificial Intelligence.

[33]  W. Rudin Real and complex analysis , 1968 .

[34]  Frantisek Matús,et al.  Conditional Independences among Four Random Variables II , 1995, Combinatorics, Probability and Computing.

[35]  T. Speed,et al.  Recursive causal models , 1984, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[36]  Jirina Vejnarová Conditional independence relations in possibility theory , 2000 .

[37]  M. Frydenberg The chain graph Markov property , 1990 .

[38]  J. Q. Smith Influence Diagrams for Statistical Modelling , 1989 .

[39]  Alan Bundy,et al.  Symbolic and Quantitative Approaches to Reasoning and Uncertainty , 1993 .

[40]  M. Studený,et al.  On chain graph models for description of conditional independence structures , 1998 .

[41]  A. Philip Dawid,et al.  Separoids: A Mathematical Framework for Conditional Independence and Irrelevance , 2001, Annals of Mathematics and Artificial Intelligence.

[42]  Yang Xiang,et al.  Critical Remarks on Single Link Search in Learning Belief Networks , 1996, UAI.

[43]  Dan Geiger,et al.  Axioms and Algorithms for Inferences Involving Probabilistic Independence , 1991, Inf. Comput..

[44]  Dan Geiger,et al.  On the logic of causal models , 2013, UAI.

[45]  John P. Moussouris Gibbs and Markov random systems with constraints , 1974 .

[46]  D. Madigan,et al.  Graphical Markov models in mul-tivariate analysis , 1999 .

[47]  Prakash P. Shenoy,et al.  Conditional independence in valuation-based systems , 1994, Int. J. Approx. Reason..

[48]  Giulianella Coletti,et al.  Null events and stochastical independence , 1998, Kybernetika.

[49]  P. Walley,et al.  A survey of concepts of independence for imprecise probabilities , 2000 .

[50]  Milan Studený,et al.  A recovery algorithm for chain graphs , 1997, Int. J. Approx. Reason..

[51]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[52]  Peter Spirtes,et al.  Directed Cyclic Graphical Representations of Feedback Models , 1995, UAI.

[53]  M. Frydenberg Marginalization and Collapsibility in Graphical Interaction Models , 1990 .

[54]  Milan Studený,et al.  Representation of Irrelevance Relations by Annotated Graphs , 2000, Fundam. Informaticae.

[55]  J. Pearl,et al.  Logical and Algorithmic Properties of Conditional Independence and Graphical Models , 1993 .

[56]  Francesco M. Malvestuto A unique formal system for binary decompositions of database relations, probability distributions, and graphs , 1992, Inf. Sci..

[57]  大西 仁,et al.  Pearl, J. (1988, second printing 1991). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan-Kaufmann. , 1994 .

[58]  Luis M. de Campos,et al.  Independence concepts in possibility theory: Part I , 1999, Fuzzy Sets Syst..

[59]  N. Wermuth,et al.  Graphical Models for Associations between Variables, some of which are Qualitative and some Quantitative , 1989 .

[60]  Michel Mouchart,et al.  A note on conditional independence with statistical applications , 1985 .

[61]  Nanny Wermuth,et al.  Multivariate Dependencies: Models, Analysis and Interpretation , 1996 .

[62]  P. Smets,et al.  Independence concepts for belief functions , 2002 .

[63]  K. K. Nambiar,et al.  Some Analytic Tools for the Design of Relational Database Systems , 1980, VLDB.

[64]  D. Madigan,et al.  Alternative Markov Properties for Chain Graphs , 2001 .

[65]  Judea Pearl,et al.  Causal networks: semantics and expressiveness , 2013, UAI.

[66]  F. Mattt,et al.  Conditional Independences among Four Random Variables Iii: Final Conclusion , 1999 .