Linear movements from two bending triple-layers

Devices formed by two triple layer artificial muscles of polypyrrole, working face to face in aqueous solution, producing longitudinal and valve movements are presented. Linear movements describing up to a 60% the length of the device were attained. Both, rate and sense of the movement are under control of the driving current. The position of the device is under control of the consumed charge. Any attained position is maintained after switching off the device. The device works simultaneously as an actuator and as a sensor of: the electrolyte concentration, the current flowing by the device, or the trailed weight.

[1]  Peter Sommer-Larsen,et al.  A Conducting Polymer Artificial Muscle with 12 % Linear Strain , 2003 .

[2]  G. Wallace,et al.  Force generation from polypyrrole actuators , 2005 .

[3]  María Teresa Cortés,et al.  Artificial Muscles with Tactile Sensitivity , 2003 .

[4]  H. Nalwa Handbook of organic conductive molecules and polymers , 1997 .

[5]  T. F. Otero,et al.  Bilayer dimensions and movement in artificial muscles , 1997 .

[6]  T. Otero,et al.  Polypyrrole artificial muscles: a new rhombic element. Construction and␣electrochemomechanical characterization , 2006 .

[7]  T. F. Otero,et al.  Artificial muscles based on conducting polymers , 1995 .

[8]  T. F. Otero,et al.  A sensing muscle , 2003 .

[9]  G. Wallace,et al.  Development of polypyrrole-based electromechanical actuators , 2000 .

[10]  R. Pelrine,et al.  Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation , 1998 .

[11]  T F Otero,et al.  Soft and wet conducting polymers for artificial muscles. , 1998, Advanced materials.

[12]  Qibing Pei,et al.  Electrochemical muscles: Bending strips built from conjugated polymers , 1993 .

[13]  T. F. Otero,et al.  A new model for electrochemical oxidation of polypyrrole under conformational relaxation control , 1995 .

[14]  A. MacDiarmid,et al.  Artificial muscle: electromechanical actuators using polyaniline films , 1994 .

[15]  María Teresa Cortés,et al.  Electrochemistry and conducting polymers : soft, wet, multifunctional and biomimetic materials , 2001 .

[16]  T F Otero,et al.  Artificial muscle: movement and position control. , 2004, Chemical communications.

[17]  E. Smela,et al.  Controlled Folding of Micrometer-Size Structures , 1995, Science.

[18]  I. Boyano,et al.  Nucleation and nonstoichiometry in electrochromic conducting polymers. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[19]  R. L. Elsenbaumer,et al.  Handbook of conducting polymers , 1986 .

[20]  Jie Ding,et al.  High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects , 2003 .

[21]  Qibing Pei,et al.  Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole , 1993 .

[22]  Toribio F. Otero,et al.  Electrochemomechanical properties from a bilayer: polypyrrole / non-conducting and flexible material — artificial muscle , 1992 .

[23]  Q. Pei,et al.  Bending bilayer strips built from polyaniline for artificial electrochemical muscles , 1993 .

[24]  Elisabeth Smela,et al.  Characterization and modeling of PPy bilayer microactuators Part 1. Curvature , 2006 .

[25]  D. De Rossi,et al.  Performance and work capacity of a polypyrrole conducting polymer linear actuator , 1997 .

[26]  K. Kaneto,et al.  Tubular linear actuators using conducting polymer, polypyrrole. , 2006, Analytica chimica acta.

[27]  Brian E. Conway,et al.  Modern Aspects of Electrochemistry , 1974 .

[28]  R. Baughman Conducting polymer artificial muscles , 1996 .

[29]  K. Kim,et al.  Ionic polymer-metal composites: I. Fundamentals , 2001 .

[30]  E. Smela Conjugated Polymer Actuators for Biomedical Applications , 2003 .