Latent Semantic Analysis and Beyond

[1]  Mark Greaves,et al.  Visualizing text data sets , 1999, Comput. Sci. Eng..

[2]  Maurice K. Wong,et al.  Algorithm AS136: A k-means clustering algorithm. , 1979 .

[3]  Peter W. Foltz,et al.  An introduction to latent semantic analysis , 1998 .

[4]  Inderjit S. Dhillon,et al.  Concept Decompositions for Large Sparse Text Data Using Clustering , 2004, Machine Learning.

[5]  R. D. Fierro,et al.  Low-Rank Orthogonal Decompositions for Information Retrieval Applications , 1995 .

[6]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[7]  William H. Hsu,et al.  Control of inductive bias in supervised learning using evolutionary computation: a wrapper-based approach , 2003 .

[8]  Tamara G. Kolda,et al.  A semidiscrete matrix decomposition for latent semantic indexing information retrieval , 1998, TOIS.

[9]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[10]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[11]  Michael W. Berry,et al.  Document clustering using nonnegative matrix factorization , 2006, Inf. Process. Manag..

[12]  P. Paatero,et al.  Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values† , 1994 .

[13]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[14]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[15]  Santosh S. Vempala,et al.  Latent Semantic Indexing , 2000, PODS 2000.

[16]  Santosh S. Vempala,et al.  Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.