Variable separation approach for a differential-difference system: special Toda equation

A bilinear variable separation approach is used to construct some special solutions for a differential-difference Toda equation. The semi-discrete form of the continuous formula which describes some types of special solutions for many (2 + 1)-dimensional continuous systems is found for a suitable quantity of the differential-difference Toda equation. Thus abundant semi-discrete localized coherent structures are constructed by appropriately selecting the arbitrary functions.

[1]  Yi Cheng,et al.  The constraint of the Kadomtsev-Petviashvili equation and its special solutions , 1991 .

[2]  R. Zhdanov Separation of variables in (1+2)-dimensional Schrödinger equations , 1997 .

[3]  Dispersionless scalar integrable hierarchies, Whitham hierarchy, and the quasiclassical ∂̄-dressing method , 2001, nlin/0105071.

[4]  S. Lou,et al.  Symmetry analysis and exact solutions of the 2+1 dimensional sine-Gordon system , 2000 .

[5]  W. Miller,et al.  Generalized Stäckel matrices , 1985 .

[6]  J. Satsuma,et al.  The trilinear equation as a (2+2)-dimensional extension of the (1+1)-dimensional relativistic Toda lattice , 1991 .

[7]  Lie point symmetries and commuting flows for equations on lattices , 2001, math-ph/0112007.

[8]  P. Vassiliou,et al.  Separation of variables for the 1-dimensional non-linear diffusion equation , 1998 .

[9]  R. Zhdanov Separation of variables in the nonlinear wave equation , 1994 .

[10]  Willard Miller,et al.  Symmetry and Separation of Variables , 1977 .

[11]  S. Lou Dromions, Dromion Lattice, Breathers and Instantons of the Davey–Stewartson Equation , 2002 .

[12]  J. Satsuma,et al.  Solutions of the Broer-Kaup System through Its Trilinear Form , 1992 .

[13]  S. Lou (2 + 1)-dimensional compacton solutions with and without completely elastic interaction properties , 2002 .

[14]  W. Miller,et al.  Differential‐Stäckel matrices , 1985 .

[15]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[16]  S. Lou,et al.  LETTER TO THE EDITOR: Localized solutions with chaotic and fractal behaviours in a (2+1)-dimensional dispersive long-wave system , 2002 .

[17]  A. K. Svinin Extension of the discrete KP hierarchy , 2001, nlin/0110035.

[18]  I. Bartoš,et al.  Edge states in a strong magnetic field , 1993, cond-mat/9311023.

[19]  S. Y. Lou,et al.  Revisitation of the localized excitations of the (2+1)-dimensional KdV equation , 2001 .

[20]  S. Lou,et al.  Formal variable separation approach for nonintegrable models , 1999 .

[21]  Solitary waves and supersonic reaction front in metastable solids. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Lou Sen-yue,et al.  Folded Solitary Waves and Foldons in (2+1) Dimensions , 2003 .

[23]  S. Lou,et al.  New variable separation approach: application to nonlinear diffusion equations , 2002, nlin/0210017.

[24]  Wang Tai-hong,et al.  Vacuum Electron-Beam Evaporation of Fe Nanocrystals on Si3N4 Buffer Layer for carbon Nanotube Growth , 2003 .

[25]  P. Kurasov,et al.  On the inverse scattering problem on branching graphs , 2002 .

[26]  Zhang Jie-fang,et al.  Coherent soliton structures of the (2+1)-dimensional long-wave-short-wave resonance interaction equation , 2002 .

[27]  N. Turok,et al.  The Toda lattice field theory hierarchies and zero-curvature conditions in Kac-Moody algebras , 1986 .

[28]  J. Satsuma,et al.  Soliton equations expressed by trilinear forms and their solutions , 1990 .

[29]  X. Geng,et al.  From the special 2 + 1 Toda lattice to the Kadomtsev-Petviashvili equation , 1999 .

[30]  H. Tam,et al.  A Special Integrable Differential-Difference Equation and Its Related Systems: Bilinear Forms Soliton Solutions and Lax Pairs , 2003 .

[31]  Xiao-Yan Tang What will happen when a dromion meets with a ghoston , 2003 .

[32]  H. Tam,et al.  Remarks on several 2+1 dimensional lattices , 2002 .

[33]  A. Kuijlaars,et al.  Direct and inverse spectral transform for the relativistic Toda lattice and the connection with Laurent orthogonal polynomials , 2002, math/0204155.

[34]  B. M. Fulk MATH , 1992 .

[35]  S. Lou,et al.  Extended multilinear variable separation approach and multivalued localized excitations for some (2+1)-dimensional integrable systems , 2003 .

[36]  S. Lou,et al.  Localized excitations of the (2 + 1)-dimensional sine-Gordon system , 2003 .

[37]  C. Qu,et al.  Separation of variables of a generalized porous medium equation with nonlinear source , 2002 .

[38]  S. Lou,et al.  (2+1)-dimensional (M+N)-component AKNS system: Painlevé integrability, infinitely many symmetries, similarity reductions and exact solutions , 2002 .

[39]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[40]  Wolfgang K. Schief,et al.  Virasoro structure and localized excitations of the LKR system , 2003 .

[41]  J. Satsuma,et al.  The conserved quantities and symmetries of the two‐dimensional Toda lattice hierarchy , 1991 .

[42]  P. W. Doyle Separation of variables for scalar evolution equations in one space dimension , 1996 .

[43]  C. Qu,et al.  Separation of variables and exact solutions to quasilinear diffusion equations with nonlinear source , 2000 .

[44]  S. Lou On the coherent structures of the Nizhnik–Novikov–Veselov equation , 2000 .

[45]  S. Lou,et al.  NEW LOCALIZED EXCITATIONS IN (2+1)-DIMENSIONAL INTEGRABLE SYSTEMS , 2002 .

[46]  Lou Sen-yue,et al.  Darboux transformation and variable separation approach: the Nizhnik-Novikov-Veselov equation , 2003 .