Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies) of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.

[1]  E. Gull,et al.  Opendf - An Implementation of the Dual Fermion Method for Strongly Correlated Systems , 2015, 1507.00895.

[2]  T. Schaefer,et al.  Dynamical vertex approximation for the two-dimensional Hubbard model , 2015, 1506.05706.

[3]  G. Scuseria,et al.  Cluster-based mean-field and perturbative description of strongly correlated fermion systems: Application to the one- and two-dimensional Hubbard model , 2015, 1505.05909.

[4]  Garnet Kin-Lic Chan,et al.  Ground-state phase diagram of the square lattice Hubbard model from density matrix embedding theory , 2015, 1504.01784.

[5]  Hartmut Hafermann,et al.  TRIQS: A toolbox for research on interacting quantum systems , 2015, Comput. Phys. Commun..

[6]  S. Chiesa,et al.  Ground-state properties of strongly interacting Fermi gases in two dimensions , 2015, 1504.00925.

[7]  R. Fr'esard,et al.  Intertwined orders from symmetry projected wavefunctions of repulsively interacting Fermi gases in optical lattices , 2015, 1503.04664.

[8]  Shiwei Zhang,et al.  Infinite variance in fermion quantum Monte Carlo calculations. , 2015, Physical review. E.

[9]  J. Gukelberger,et al.  On the dangers of partial diagrammatic summations: Benchmarks for the two-dimensional Hubbard model in the weak-coupling regime , 2015, 1501.04960.

[10]  C. Taranto,et al.  Correlated starting points for the functional renormalization group , 2014, 1411.1342.

[11]  H. Hafermann,et al.  Superconductivity, antiferromagnetism and phase separation in the two-dimensional Hubbard model: A dual-fermion approach , 2014, 1410.1246.

[12]  G. Scuseria,et al.  Variational description of the ground state of the repulsive two-dimensional Hubbard model in terms of nonorthogonal symmetry-projected Slater determinants , 2014, 1408.2567.

[13]  Youjin Deng,et al.  Emergent BCS regime of the two-dimensional fermionic Hubbard model: Ground-state phase diagram , 2014, 1408.2088.

[14]  Jie Xu,et al.  CPMC-Lab: A Matlab package for Constrained Path Monte Carlo calculations , 2014, Comput. Phys. Commun..

[15]  A. Georges,et al.  Nonexistence of the Luttinger-Ward functional and misleading convergence of skeleton diagrammatic series for hubbard-like models. , 2014, Physical review letters.

[16]  N. Nagaosa,et al.  Diagrammatic Monte Carlo method for many-polaron problems. , 2014, Physical review letters.

[17]  K. Held,et al.  Fate of the false Mott-Hubbard transition in two dimensions , 2014, 1405.7250.

[18]  George H. Booth,et al.  Intermediate and spin-liquid phase of the half-filled honeycomb Hubbard model , 2014, 1402.5622.

[19]  M. Troyer,et al.  Competing states in the t-J model: uniform D-wave state versus stripe state. , 2014, Physical review letters.

[20]  G. Scuseria,et al.  Symmetry-projected wave functions in quantum Monte Carlo calculations , 2014, 1402.0018.

[21]  Gustavo E. Scuseria,et al.  Density Matrix Embedding from Broken Symmetry Lattice Mean-Fields , 2013, 1310.0051.

[22]  E. Gull,et al.  Critical exponents of strongly correlated fermion systems from diagrammatic multiscale methods. , 2013, Physical review letters.

[23]  Garnet Kin-Lic Chan,et al.  Spectral functions of strongly correlated extended systems via an exact quantum embedding , 2013, 1309.2320.

[24]  Zoltán Rolik,et al.  An efficient linear-scaling CCSD(T) method based on local natural orbitals. , 2013, The Journal of chemical physics.

[25]  K. Held,et al.  From infinite to two dimensions through the functional renormalization group. , 2013, Physical review letters.

[26]  E. Gull,et al.  Equation of state of the fermionic two-dimensional Hubbard model , 2013, 1305.6798.

[27]  B. Svistunov,et al.  Bold diagrammatic Monte Carlo for the resonant Fermi gas , 2013 .

[28]  G. Scuseria,et al.  Multireference symmetry-projected variational approaches for ground and excited states of the one-dimensional Hubbard model , 2013, 1304.4192.

[29]  Shiwei Zhang,et al.  Symmetry in auxiliary-field quantum Monte Carlo calculations , 2013, 1307.2147.

[30]  M. Troyer,et al.  Neel temperature and thermodynamics of the half-filled three-dimensional Hubbard model by diagrammatic determinant Monte Carlo , 2012, 1212.3027.

[31]  Garnet Kin-Lic Chan,et al.  Density Matrix Embedding: A Strong-Coupling Quantum Embedding Theory. , 2012, Journal of chemical theory and computation.

[32]  B. Svistunov,et al.  Bold diagrammatic Monte Carlo method applied to fermionized frustrated spins. , 2012, Physical review letters.

[33]  B. Svistunov,et al.  Bold Diagrammatic Monte Carlo technique for frustrated spin systems , 2012, 1211.3631.

[34]  Garnet Kin-Lic Chan,et al.  Density matrix embedding: a simple alternative to dynamical mean-field theory. , 2012, Physical review letters.

[35]  G. Scuseria,et al.  Symmetry-projected variational approach for ground and excited states of the two-dimensional Hubbard model , 2012, 1204.2006.

[36]  I. Peschel Special Review: Entanglement in Solvable Many-Particle Models , 2012, Brazilian Journal of Physics.

[37]  A. Honecker,et al.  Modern Theories of Many-Particle Systems in Condensed Matter Physics , 2012 .

[38]  S. Sorella Linearized auxiliary fields Monte Carlo technique: Efficient sampling of the fermion sign , 2011, 1111.6208.

[39]  A. Schirotzek,et al.  Feynman diagrams versus Fermi-gas Feynman emulator , 2011, Nature Physics.

[40]  Shiwei Zhang,et al.  Spin- and charge-density waves in the Hartree–Fock ground state of the two-dimensional Hubbard model , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  Steven R. White,et al.  Studying Two Dimensional Systems With the Density Matrix Renormalization Group , 2011, 1105.1374.

[42]  M. Troyer,et al.  Stripes in the two-dimensional t-J model with infinite projected entangled-pair states , 2011, 1104.5463.

[43]  Sebastian Fuchs,et al.  Continuous-time quantum Monte Carlo impurity solvers , 2011, Comput. Phys. Commun..

[44]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[45]  Claudius Gros,et al.  Backflow correlations in the Hubbard model: An efficient tool for the study of the metal-insulator transition and the large-U limit , 2011, 1102.3017.

[46]  S. Todo,et al.  The ALPS project release 2.0: open source software for strongly correlated systems , 2011, 1101.2646.

[47]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[48]  Emanuel Gull,et al.  Submatrix updates for the continuous-time auxiliary-field algorithm , 2010, 1010.3690.

[49]  T. Pruschke,et al.  Thermodynamics of the 3D Hubbard model on approaching the Néel transition. , 2010, Physical review letters.

[50]  Emanuel Gull,et al.  Bold-line diagrammatic Monte Carlo method: General formulation and application to expansion around the noncrossing approximation , 2010, 1004.0724.

[51]  Shiwei Zhang,et al.  Spin and charge order in the doped hubbard model: long-wavelength collective modes. , 2009, Physical review letters.

[52]  M. Troyer,et al.  Diagrammatic Monte Carlo for correlated fermions , 2009, 0907.0863.

[53]  A. Georges,et al.  Dual fermion approach to the two-dimensional Hubbard model: Antiferromagnetic fluctuations and Fermi arcs , 2008, 0810.3819.

[54]  Shiwei Zhang,et al.  Spatially inhomogeneous phase in the two-dimensional repulsive Hubbard model , 2008, 0805.4831.

[55]  Sandro Sorella,et al.  Role of backflow correlations for the nonmagnetic phase of the t-t(') Hubbard model , 2008, 0805.1476.

[56]  Emanuel Gull,et al.  Continuous-time auxiliary-field Monte Carlo for quantum impurity models , 2008, 0802.3222.

[57]  Kris Van Houcke,et al.  Diagrammatic Monte Carlo , 2008, 0802.2923.

[58]  Steven R White,et al.  Neél order in square and triangular lattice Heisenberg models. , 2007, Physical review letters.

[59]  Josef Paldus,et al.  A Critical Assessment of Coupled Cluster Method in Quantum Chemistry , 2007 .

[60]  Boris Svistunov,et al.  Bold diagrammatic Monte Carlo technique: when the sign problem is welcome. , 2007, Physical review letters.

[61]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[62]  T. Pruschke,et al.  Numerical renormalization group method for quantum impurity systems , 2007, cond-mat/0701105.

[63]  A. I. Lichtenstein,et al.  Dual fermion approach to nonlocal correlations in the Hubbard model , 2006, cond-mat/0612196.

[64]  D. Scalapino Numerical Studies of the 2D Hubbard Model , 2006, cond-mat/0610710.

[65]  M. Troyer,et al.  The Fermi–Hubbard model at unitarity , 2006, cond-mat/0605350.

[66]  Jaan Oitmaa,et al.  Series Expansion Methods for Strongly Interacting Lattice Models: Introduction , 2006 .

[67]  K. Held,et al.  Dynamical vertex approximation : A step beyond dynamical mean-field theory , 2006, cond-mat/0603100.

[68]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[69]  S. Sorella,et al.  Unconventional metal-insulator transition in two dimensions , 2005, cond-mat/0509062.

[70]  T. Kotani,et al.  QuasiParticle Self-Consistent, $GW$ Theory , 2005 .

[71]  T. Kotani,et al.  Quasiparticle self-consistent GW theory. , 2005, Physical review letters.

[72]  A. Rubtsov,et al.  Continuous-time quantum Monte Carlo method for fermions: Beyond auxiliary field framework , 2004, cond-mat/0411344.

[73]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[74]  T. Pruschke,et al.  Quantum cluster theories , 2004, cond-mat/0404055.

[75]  K. Schmid On the use of general symmetry-projected Hartree–Fock–Bogoliubov configurations in variational approaches to the nuclear many-body problem , 2004 .

[76]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[77]  E. Tosatti,et al.  Variational description of Mott insulators. , 2004, Physical review letters.

[78]  Garnet Kin-Lic Chan,et al.  An algorithm for large scale density matrix renormalization group calculations. , 2004, The Journal of chemical physics.

[79]  N. Tomita Many-body wave functions approximated by the superposition of spin-projected nonorthogonal Slater determinants in the resonating Hartree-Fock method , 2004 .

[80]  M. Imada,et al.  Quantum-number projection in the path-integral renormalization group method , 2003, cond-mat/0311005.

[81]  Shiwei Zhang,et al.  Quantum Monte Carlo method using phase-free random walks with slater determinants. , 2002, Physical review letters.

[82]  M. Head‐Gordon,et al.  Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group , 2002 .

[83]  D. Ceperley,et al.  Twist-averaged boundary conditions in continuum quantum Monte Carlo algorithms. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  G. Kotliar,et al.  Cellular Dynamical Mean Field Approach to Strongly Correlated Systems , 2000, cond-mat/0010328.

[85]  S. Sorella,et al.  Spatially homogeneous ground state of the two-dimensional Hubbard model , 2000, cond-mat/0010165.

[86]  Akihiko Sakamoto,et al.  Diagrammatic quantum Monte Carlo study of the Fröhlich polaron , 2000 .

[87]  Metzner,et al.  d-wave superconductivity and pomeranchuk instability in the two-dimensional hubbard model , 2000, Physical review letters.

[88]  M. Katsnelson,et al.  Antiferromagnetism and d -wave superconductivity in cuprates: A cluster dynamical mean-field theory , 1999, cond-mat/9911320.

[89]  Y. Asai,et al.  Coupled-Cluster Approach to Electron Correlations in the Two-Dimensional Hubbard Model , 1999, cond-mat/9904400.

[90]  R. Hlubina Phase diagram of the weak-coupling two-dimensional t − t ′ Hubbard model at low and intermediate electron density , 1999 .

[91]  Bangalore,et al.  Dynamical cluster approximation: Nonlocal dynamics of correlated electron systems , 1999, cond-mat/9903273.

[92]  B. Svistunov,et al.  POLARON PROBLEM BY DIAGRAMMATIC QUANTUM MONTE CARLO , 1998, cond-mat/9804097.

[93]  H. R. Krishnamurthy,et al.  Nonlocal Dynamical Correlations of Strongly Interacting Electron Systems , 1998, cond-mat/9803295.

[94]  S. White,et al.  DENSITY MATRIX RENORMALIZATION GROUP STUDY OF THE STRIPED PHASE IN THE 2D T-J MODEL , 1998 .

[95]  A. Sandvik Finite-size scaling of the ground-state parameters of the two-dimensional Heisenberg model , 1997, cond-mat/9707123.

[96]  J. Carlson,et al.  Constrained path Monte Carlo method for fermion ground states , 1996, cond-mat/9607062.

[97]  Legeza,et al.  Accuracy of the density-matrix renormalization-group method. , 1996, Physical review. B, Condensed matter.

[98]  Schulz,et al.  Superconducting instabilities of the non-half-filled Hubbard model in two dimensions. , 1995, Physical review. B, Condensed matter.

[99]  Raymond F. Bishop,et al.  A microscopic coupled-cluster treatment of electronic correlations in Hubbard models , 1995 .

[100]  D. Ceperley,et al.  Proof for an upper bound in fixed-node Monte Carlo for lattice fermions. , 1994, Physical review. B, Condensed matter.

[101]  Petit,et al.  Coupled-cluster method applied to the motion of a single hole in a Hubbard antiferromagnet. , 1994, Physical review. B, Condensed matter.

[102]  E. Dagotto Correlated electrons in high-temperature superconductors , 1993, cond-mat/9311013.

[103]  White,et al.  Density-matrix algorithms for quantum renormalization groups. , 1993, Physical review. B, Condensed matter.

[104]  A. Chubukov,et al.  Kohn-Luttinger effect and the instability of a two-dimensional repulsive Fermi liquid at T=0. , 1993, Physical review. B, Condensed matter.

[105]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[106]  Lu,et al.  Pairing instabilities in the two-dimensional Hubbard model. , 1992, Physical review. B, Condensed matter.

[107]  M. Baranov,et al.  D-wave pairing in the two-dimensional Hubbard model with low filling , 1992 .

[108]  Georges,et al.  Hubbard model in infinite dimensions. , 1992, Physical review. B, Condensed matter.

[109]  Hirschfeld,et al.  Rigorous bounds for ground-state properties of correlated Fermi systems. , 1991, Physical review. B, Condensed matter.

[110]  Hirschfeld,et al.  Lower bounds for the ground-state energies of the two-dimensional Hubbard and t-J models. , 1991, Physical review. B, Condensed matter.

[111]  White,et al.  Sign problem in the numerical simulation of many-electron systems. , 1990, Physical review. B, Condensed matter.

[112]  Trivedi,et al.  Ground-state correlations of quantum antiferromagnets: A Green-function Monte Carlo study. , 1990, Physical review. B, Condensed matter.

[113]  Nicholas C. Handy,et al.  Size-consistent Brueckner theory limited to double substitutions , 1989 .

[114]  E. Müller-Hartmann,et al.  Correlated fermions on a lattice in high dimensions , 1989 .

[115]  White,et al.  Numerical study of the two-dimensional Hubbard model. , 1989, Physical review. B, Condensed matter.

[116]  Fisher,et al.  Universality, low-temperature properties, and finite-size scaling in quantum antiferromagnets. , 1989, Physical review. B, Condensed matter.

[117]  Neuberger,et al.  Finite-size effects in Heisenberg antiferromagnets. , 1989, Physical review. B, Condensed matter.

[118]  C. Gros,et al.  Superconductivity in correlated wave functions. , 1988, Physical review. B, Condensed matter.

[119]  Huse,et al.  Ground-state staggered magnetization of two-dimensional quantum Heisenberg antiferromagnets. , 1988, Physical review. B, Condensed matter.

[120]  H. Shiba,et al.  Variational Monte-Carlo Studies of Hubbard Model. I , 1987 .

[121]  Julia E. Rice,et al.  The closed‐shell coupled cluster single and double excitation (CCSD) model for the description of electron correlation. A comparison with configuration interaction (CISD) results , 1987 .

[122]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[123]  S. Koonin,et al.  Auxiliary field Monte-Carlo for quantum many-body ground states , 1986 .

[124]  Hirsch Two-dimensional Hubbard model: Numerical simulation study. , 1985, Physical review. B, Condensed matter.

[125]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[126]  R. Sugar,et al.  Monte Carlo calculations of coupled boson-fermion systems. I , 1981 .

[127]  A. Fetter,et al.  Quantum Theory of Many-Particle Systems , 1971 .

[128]  Elliott H. Lieb,et al.  Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension , 1968 .

[129]  Y. Nagaoka Ferromagnetism in a Narrow, Almost Half-Filled s Band , 1966 .

[130]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[131]  J. Kanamori,et al.  Electron Correlation and Ferromagnetism of Transition Metals , 1963 .

[132]  M. Gutzwiller Effect of Correlation on the Ferromagnetism of Transition Metals , 1963 .

[133]  Philip W. Anderson,et al.  New Approach to the Theory of Superexchange Interactions , 1959 .

[134]  Shiwei Zhang,et al.  Auxiliary-field quantum Monte Carlo for correlated electron systems , 2013 .

[135]  R. Bartlett,et al.  Many – Body Methods in Chemistry and Physics: Diagrammatic notation , 2009 .

[136]  K. Yamaguchi,et al.  Formulation of unrestricted and restricted Hartree–Fock–Bogoliubov equations , 2004 .

[137]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[138]  Claudius Gros,et al.  Physics of Projected Wavefunctions , 1989 .

[139]  P. D. Gennes,et al.  Superconductivity of metals and alloys , 1966 .

[140]  and as an in , 2022 .