Robust PCA by Manifold Optimization

Robust PCA is a widely used statistical procedure to recover a underlying low-rank matrix with grossly corrupted observations. This work considers the problem of robust PCA as a nonconvex optimization problem on the manifold of low-rank matrices, and proposes two algorithms (for two versions of retractions) based on manifold optimization. It is shown that, with a proper designed initialization, the proposed algorithms are guaranteed to converge to the underlying low-rank matrix linearly. Compared with a previous work based on the Burer-Monterio decomposition of low-rank matrices, the proposed algorithms reduce the dependence on the conditional number of the underlying low-rank matrix theoretically. Simulations and real data examples confirm the competitive performance of our method.

[1]  Volkan Cevher,et al.  MATRIX ALPS: Accelerated low rank and sparse matrix reconstruction , 2012, 2012 IEEE Statistical Signal Processing Workshop (SSP).

[2]  Chandler Davis The rotation of eigenvectors by a perturbation , 1963 .

[3]  David P. Woodruff,et al.  Low rank approximation and regression in input sparsity time , 2013, STOC '13.

[4]  Nicolas Boumal,et al.  Nonconvex Phase Synchronization , 2016, SIAM J. Optim..

[5]  Christopher De Sa,et al.  Global Convergence of Stochastic Gradient Descent for Some Non-convex Matrix Problems , 2014, ICML.

[6]  Prateek Jain,et al.  Tighter Low-rank Approximation via Sampling the Leveraged Element , 2015, SODA.

[7]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[8]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[9]  Pierre-Antoine Absil,et al.  Robust Low-Rank Matrix Completion by Riemannian Optimization , 2016, SIAM J. Sci. Comput..

[10]  Constantine Caramanis,et al.  Fast Algorithms for Robust PCA via Gradient Descent , 2016, NIPS.

[11]  Prateek Jain,et al.  Non-convex Robust PCA , 2014, NIPS.

[12]  Alan M. Frieze,et al.  Fast Monte-Carlo algorithms for finding low-rank approximations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[13]  Tony F. Chan,et al.  Guarantees of Riemannian Optimization for Low Rank Matrix Recovery , 2015, SIAM J. Matrix Anal. Appl..

[14]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[15]  Bart Vandereycken,et al.  Low-Rank Matrix Completion by Riemannian Optimization , 2013, SIAM J. Optim..

[16]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[17]  Pierre-Antoine Absil,et al.  Low-rank retractions: a survey and new results , 2015, Comput. Optim. Appl..

[18]  Prateek Jain,et al.  Nearly Optimal Robust Matrix Completion , 2016, ICML.

[19]  Anastasios Kyrillidis,et al.  Provable Burer-Monteiro factorization for a class of norm-constrained matrix problems , 2016 .

[20]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[21]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[22]  Nicolas Boumal,et al.  On the low-rank approach for semidefinite programs arising in synchronization and community detection , 2016, COLT.

[23]  Martin J. Wainwright,et al.  Fast low-rank estimation by projected gradient descent: General statistical and algorithmic guarantees , 2015, ArXiv.

[24]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[25]  Zhaoran Wang,et al.  Low-Rank and Sparse Structure Pursuit via Alternating Minimization , 2016, AISTATS.

[26]  Daphna Weinshall,et al.  Online Learning in the Embedded Manifold of Low-rank Matrices , 2012, J. Mach. Learn. Res..

[27]  Jarvis D. Haupt,et al.  Identifying Outliers in Large Matrices via Randomized Adaptive Compressive Sampling , 2014, IEEE Transactions on Signal Processing.

[28]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[29]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[30]  Russell A. Epstein,et al.  5/spl plusmn/2 eigenimages suffice: an empirical investigation of low-dimensional lighting models , 1995, Proceedings of the Workshop on Physics-Based Modeling in Computer Vision.

[31]  Max Simchowitz,et al.  Low-rank Solutions of Linear Matrix Equations via Procrustes Flow , 2015, ICML.

[32]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[33]  Renato D. C. Monteiro,et al.  Digital Object Identifier (DOI) 10.1007/s10107-004-0564-1 , 2004 .

[34]  Ryan Kennedy Low-Rank Matrix Completion , 2013 .

[35]  Ameet Talwalkar,et al.  Divide-and-Conquer Matrix Factorization , 2011, NIPS.

[36]  Xiao Zhang,et al.  A Unified Computational and Statistical Framework for Nonconvex Low-rank Matrix Estimation , 2016, AISTATS.

[37]  Ronen Basri,et al.  Lambertian Reflectance and Linear Subspaces , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  John Wright,et al.  Complete Dictionary Recovery Over the Sphere I: Overview and the Geometric Picture , 2015, IEEE Transactions on Information Theory.

[39]  W. Kahan,et al.  The Rotation of Eigenvectors by a Perturbation. III , 1970 .

[40]  Pablo A. Parrilo,et al.  Rank-Sparsity Incoherence for Matrix Decomposition , 2009, SIAM J. Optim..

[41]  George Atia,et al.  High Dimensional Low Rank Plus Sparse Matrix Decomposition , 2015, IEEE Transactions on Signal Processing.

[42]  Anastasios Kyrillidis,et al.  Non-square matrix sensing without spurious local minima via the Burer-Monteiro approach , 2016, AISTATS.

[43]  Sham M. Kakade,et al.  Robust Matrix Decomposition With Sparse Corruptions , 2011, IEEE Transactions on Information Theory.

[44]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.