Geopolymer concrete: A review of some recent developments

Abstract An overview of advances in geopolymers formed by the alkaline activation of aluminosilicates is presented alongwith opportunities for their use in building construction. The properties of mortars/concrete made from geopolymeric binders are discussed with respect to fresh and hardened states, interfacial transition zone between aggregate and geopolymer, bond with steel reinforcing bars and resistance to elevated temperature. The durability of geopolymer pastes and concrete is highlighted in terms of their deterioration in various aggressive environments. R&D works carried out on heat and ambient cured geopolymers at CSIR-CBRI are briefly outlined alongwith the product developments. Research findings revealed that geopolymer concrete exhibited comparative properties to that of OPC concrete which has potential to be used in civil engineering applications.

[1]  Erez N. Allouche,et al.  Impact of Alkali Silica Reaction on Fly Ash-Based Geopolymer Concrete , 2013 .

[2]  J.S.J. van Deventer,et al.  Chemical interactions between siliceous aggregates and low-Ca alkali-activated cements , 2007 .

[3]  Ángel Palomo,et al.  Alkali–aggregate reaction in activated fly ash systems , 2007 .

[4]  B. V. Rangan,et al.  Fly ash-based geopolymer concrete: study of slender reinforced columns , 2007 .

[5]  C. Shi,et al.  New cements for the 21st century: The pursuit of an alternative to Portland cement , 2011 .

[6]  Hamid Nikraz,et al.  Properties of fly ash geopolymer concrete designed by Taguchi method , 2012 .

[7]  Stephen J. Foster,et al.  The behaviour of steel-fibre-reinforced geopolymer concrete beams in shear , 2013 .

[8]  Francisca Puertas,et al.  The alkali–silica reaction in alkali-activated granulated slag mortars with reactive aggregate , 2002 .

[9]  P. Sarker,et al.  Fracture behaviour of heat cured fly ash based geopolymer concrete , 2013 .

[10]  V. Sirivivatnanon,et al.  Workability and strength of coarse high calcium fly ash geopolymer , 2007 .

[11]  A. Neville Properties of Concrete , 1968 .

[12]  Jay G. Sanjayan,et al.  Effect of elevated temperatures on geopolymer paste, mortar and concrete , 2010 .

[13]  N. Shafiq,et al.  Effects of micro-structure characteristics of interfacial transition zone on the compressive strength of self-compacting geopolymer concrete , 2013 .

[14]  T. Bakharev,et al.  Durability of Geopolymer Materials in Sodium and Magnesium Sulfate Solutions , 2005 .

[15]  H. Lee,et al.  Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers , 2014 .

[16]  J. Davidovits Geopolymers : inorganic polymeric new materials , 1991 .

[17]  Jean-Baptiste Edouard EXPERIMENTAL EVALUATION OF THE DURABILITY OF FLY ASH-BASED GEOPOLYMER CONCRETE IN THE MARINE ENVIRONMENT , 2011 .

[18]  Chai Jaturapitakkul,et al.  NaOH-activated ground fly ash geopolymer cured at ambient temperature , 2011 .

[19]  Kyung-Taek Koh,et al.  The mechanical properties of fly ash-based geopolymer concrete with alkaline activators , 2013 .

[20]  C. M. Ruzaidi,et al.  Effect of Curing Profile on Kaolin-based Geopolymers , 2011 .

[21]  T. Bakharev,et al.  Resistance of geopolymer materials to acid attack , 2005 .

[22]  Phillip Frank Gower Banfill,et al.  Rheology and Setting of Alkali-Activated Slag Pastes and Mortars: Effect of Organic Admixture , 2008 .

[23]  J. Deventer,et al.  The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation , 2005 .

[24]  John L. Provis,et al.  Effect of Calcium Silicate Sources on Geopolymerisation , 2008 .

[25]  P. K. Mehta,et al.  Concrete: Microstructure, Properties, and Materials , 2005 .

[26]  Jadambaa Temuujin,et al.  Preparation and characterisation of fly ash based geopolymer mortars , 2010 .

[27]  Jay G. Sanjayan,et al.  Resistance of alkali-activated slag concrete to acid attack , 2003 .

[28]  B. Zhang,et al.  Crystalline phase formation in metakaolinite geopolymers activated with NaOH and sodium silicate , 2009 .

[29]  S. P. Mehrotra,et al.  Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer , 2010, Journal of Materials Science.

[30]  Kim S. Finnie,et al.  Influence of curing schedule on the integrity of geopolymers , 2007 .

[31]  Longtu Li,et al.  A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements , 2010 .

[32]  Warren A. Dick,et al.  Compressive strength and microstructural characteristics of class C fly ash geopolymer , 2010 .

[33]  Mohd Warid Hussin,et al.  Sulfuric acid resistance of blended ash geopolymer concrete , 2013 .

[34]  John L. Provis,et al.  Engineering and durability properties of concretes based on alkali-activated granulated blast furnac , 2012 .

[35]  Konstantinos A. Komnitsas,et al.  Potential of geopolymer technology towards green buildings and sustainable cities , 2011 .

[36]  Y. S. Zhang,et al.  Hydration process of interfacial transition in potassium polysialate (K-PSDS) geopolymer concrete , 2005 .

[37]  Jay G. Sanjayan,et al.  Geopolymer and Portland cement concretes in simulated fire , 2011 .

[38]  Prinya Chindaprasirt,et al.  Workability and strength of lignite bottom ash geopolymer mortar. , 2009, Journal of hazardous materials.

[39]  Ángel Palomo,et al.  Engineering Properties of Alkali-Activated Fly Ash Concrete , 2006 .

[40]  A. Atkinson,et al.  Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure , 2002 .

[41]  J.S.J. van Deventer,et al.  The interface between natural siliceous aggregates and geopolymers , 2004 .

[42]  Priyan Mendis,et al.  Bond performance of reinforcing bars in inorganic polymer concrete (IPC) , 2007 .

[43]  Jay G. Sanjayan,et al.  Fracture properties of geopolymer paste and concrete , 2011 .

[44]  B. Vijaya Rangan,et al.  ON THE DEVELOPMENT OF FLY ASH-BASED GEOPOLYMER CONCRETE , 2004 .

[45]  P. Chindaprasirt,et al.  Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems , 2012, Journal of Materials Science.

[46]  Kwesi Sagoe-Crentsil,et al.  Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures , 2007 .

[47]  Keun-Hyeok Yang,et al.  Workability Loss and Compressive Strength Development of Cementless Mortars Activated by Combination of Sodium Silicate and Sodium Hydroxide , 2009 .

[48]  Pavel Rovnaník,et al.  Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer , 2010 .

[49]  Hugo Marcelo Veit,et al.  The effects of Na2O/SiO2 molar ratio, curing temperature and age on compressive strength, morphology and microstructure of alkali-activated fly ash-based geopolymers , 2011 .

[50]  Erez N. Allouche,et al.  Mechanical Properties of Fly-Ash-Based Geopolymer Concrete , 2011 .

[51]  J. Sanjayan,et al.  Effect of strain rate on strength properties of low-calcium fly-ash-based geopolymer mortar under dry condition , 2013, Arabian Journal of Geosciences.

[52]  V. Sirivivatnanon,et al.  Kinetics of geopolymerization: Role of Al2O3 and SiO2 , 2007 .

[53]  Ángel Palomo,et al.  Alkali-activated fly ashes: A cement for the future , 1999 .

[54]  Joseph Robert Yost,et al.  Structural behavior of alkali activated fly ash concrete. Part 2: structural testing and experimental findings , 2012, Materials and Structures.

[55]  Priyan Mendis,et al.  Engineering properties of inorganic polymer concretes (IPCs) , 2007 .

[56]  A. Ashour,et al.  Flow and Compressive Strength of Alkali-Activated Mortars , 2009 .

[57]  R. Swamy,et al.  The Alkali-silica reaction in concrete , 1998 .

[58]  A. Allahverdi,et al.  Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan , 2009 .

[59]  Prabir Sarker,et al.  Bond strength of reinforcing steel embedded in fly ash-based geopolymer concrete , 2011 .

[60]  Shigemitsu Hatanaka,et al.  High-Strength Geopolymer Using Fine High-Calcium Fly Ash , 2011 .

[61]  Kwesi Sagoe-Crentsil,et al.  Factors affecting the performance of metakaolin geopolymers exposed to elevated temperatures , 2008 .

[62]  Joseph Robert Yost,et al.  Structural behavior of alkali activated fly ash concrete. Part 1: mixture design, material properties and sample fabrication , 2013 .

[63]  J. Deventer,et al.  Geopolymer technology: the current state of the art , 2007 .

[64]  J.S.J. van Deventer,et al.  Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers , 1999 .

[65]  D. Hardjito,et al.  FLY ASH-BASED GEOPOLYMER MORTAR INCORPORATING BOTTOM ASH , 2009 .

[66]  Hua Xu,et al.  Geopolymerisation of multiple minerals , 2002 .

[67]  Ali Akbar Ramezanianpour,et al.  Engineering Properties of Alkali-Activated Natural Pozzolan Concrete , 2011 .

[68]  J. Deventer,et al.  Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure , 2013 .

[69]  Jadambaa Temuujin,et al.  Characterisation of class F fly ash geopolymer pastes immersed in acid and alkaline solutions , 2011 .

[70]  Pavel V. Krivenko,et al.  Directed synthesis of alkaline aluminosilicate minerals in a geocement matrix , 2007 .

[71]  Paramita Mondal,et al.  Role of slag in microstructural development and hardening of fly ash-slag geopolymer , 2013 .

[72]  J.S.J. van Deventer,et al.  THE EFFECT OF COMPOSITION AND TEMPERATURE ON THE PROPERTIES OF FLY ASH- AND KAOLINITE -BASED GEOPOLYMERS , 2002 .

[73]  Á. Palomo,et al.  Durability of alkali-activated fly ash cementitious materials , 2007 .

[74]  A. Kusbiantoro,et al.  Development of Sucrose and Citric Acid as the Natural based Admixture for Fly Ash based Geopolymer , 2013 .