Explicit representation of physical processes in concrete fracture

The utility of concrete as a cost-effective, durable structural material depends largely on its fracture properties. Improved understandings of the physical bases and scaling of concrete fracture are needed to meet the growing expectations and constraints on concrete usage in high-performance applications, and to develop alternative cementitious materials for reduced environmental load. This paper reviews relevant knowledge of fracture processes in concrete, with a particular focus on ways new 3D measurements may be coupled with discrete modelling approaches. The microstructure of concrete is briefly reviewed in the context of the physical processes that dictate fracture properties. We advocate a modelling approach where, to the extent possible, a direct correspondence is made between measured material structure and the structures explicitly represented by numerical models. This correspondence is made by utilizing x-ray microtomography, a high-resolution 3D imaging technique, and lattice models that mimic physical structure and processes. 3D image analysis provides us with quantitative measurements of internal damage progression. 3D lattice simulations offer the potential for extracting additional knowledge from these high-fidelity measurements.

[1]  Ignacio Carol,et al.  3D meso-structural analysis of concrete specimens under uniaxial tension , 2006 .

[2]  Floyd O. Slate,et al.  X-Rays for Study of Internal Structure and Microcracking of Concrete , 1963 .

[3]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[4]  Arup K. Maji,et al.  Acoustic emissions from reinforced concrete , 1994 .

[5]  John E. Bolander,et al.  Irregular lattice model for quasistatic crack propagation , 2005 .

[6]  Surendra P. Shah,et al.  Fracture mechanics of concrete , 1995 .

[7]  B. Widom,et al.  Random Sequential Addition of Hard Spheres to a Volume , 1966 .

[8]  Gianluca Cusatis,et al.  Confinement-Shear Lattice Model for Concrete Damage in Tension and Compression: I. Theory , 2002 .

[9]  E. Landis,et al.  EXPERIMENTS TO RELATE ACOUSTIC EMISSION ENERGY TO FRACTURE ENERGY OF CONCRETE , 2002 .

[10]  John E. Bolander,et al.  Irregular lattice models of fracture of multiphase particulate materials , 2006 .

[11]  E. Landis Micro–macro fracture relationships and acoustic emissions in concrete , 1999 .

[12]  Zdenek P. Bazant,et al.  Interface element modeling of fracture in aggregate composites , 1987 .

[13]  G. Lilliu,et al.  On the relative use of micro-mechanical lattice analysis of 3-phase particle composites , 2007 .

[14]  Erik Schlangen,et al.  Experimental and numerical analysis of micromechanisms of fracture of cement-based composites , 1992 .

[15]  Rl Meltzer,et al.  Acoustic Emission of Plain Concrete , 1977 .

[16]  Gianluca Cusatis,et al.  CONFINEMENT-SHEAR LATTICE MODEL FOR CONCRETE DAMAGE IN TENSION AND COMPRESSION: II. COMPUTATION AND VALIDATION , 2003 .

[17]  Stefano Zapperi,et al.  Statistical models of fracture , 2006, cond-mat/0609650.

[18]  John E. Bolander,et al.  Fracture of fiber-reinforced cement composites: effects of fiber dispersion , 2008 .

[19]  Y. R. Rashid,et al.  Ultimate strength analysis of prestressed concrete pressure vessels , 1968 .

[20]  F. Slate,et al.  Microcracking of Plain Concrete and the Shape of the Stress-Strain Curve , 1963 .

[21]  Surendra P. Shah,et al.  The influence of microcracking on the mechanical behavior of cement based materials , 1995 .

[22]  Z. Bažant,et al.  Nonlocal damage theory , 1987 .

[23]  M. Tabbara,et al.  RANDOM PARTICLE MODEL FOR FRACTURE OF AGGREGATE OR FIBER COMPOSITES , 1990 .

[24]  Surendra P. Shah,et al.  INELASTIC BEHAVIOR AND FRACTURE OF CONCRETE , 1966 .

[25]  J. Mier Fracture Processes of Concrete , 1997 .

[26]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[27]  D. Ngo,et al.  Finite Element Analysis of Reinforced Concrete Beams , 1967 .

[28]  Z. Bažant,et al.  Crack band theory for fracture of concrete , 1983 .

[29]  A.H.J.M. Vervuurt,et al.  Interface Fracture in Concrete , 1997 .

[30]  J. Bolander,et al.  Fracture analyses using spring networks with random geometry , 1998 .

[31]  P. E. Roelfstra,et al.  Le béton numérique , 1985 .

[32]  Christian U. Grosse,et al.  Relative moment tensor inversion applied to concrete fracture tests , 1996 .

[33]  G. Scherer Structure and properties of gels , 1999 .

[34]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[35]  Milan Jirásek,et al.  Nonlocal models for damage and fracture: Comparison of approaches , 1998 .

[36]  Roux,et al.  Fracture of disordered, elastic lattices in two dimensions. , 1989, Physical review. B, Condensed matter.

[37]  Recovery of microcrack parameters in mortar using quantitative acoustic emission , 1993 .

[38]  J. Mier Framework for a generalized four-stage fracture model of cement-based materials , 2008 .

[39]  George Nagy,et al.  Cracking, damage and fracture in four dimensions , 2007 .

[40]  J. Isenberg A STUDY OF CRACKS IN CONCRETE BY X-RADIOGRAPHY , 1966 .

[41]  Surendra P. Shah,et al.  Localization of microcracking in concrete under uniaxial tension , 1994 .

[42]  M. Jirásek,et al.  Particle Model for Quasibrittle Fracture and Application to Sea Ice , 1995 .

[43]  Edward J. Garboczi,et al.  Multiscale Analytical/Numerical Theory of the Diffusivity of Concrete , 1998 .

[44]  Tadahiko Kawai,et al.  New discrete models and their application to seismic response analysis of structures , 1978 .

[45]  Sia Nemat-Nasser,et al.  Compression‐induced microcrack growth in brittle solids: Axial splitting and shear failure , 1985 .

[46]  Masayasu Ohtsu,et al.  The history and development of acoustic emission in concrete engineering , 1996 .

[47]  Murthy N. Guddati,et al.  An efficient algorithm for modelling progressive damage accumulation in disordered materials , 2005 .

[48]  S. Zapperi,et al.  Fracture in three-dimensional random fuse model: recent advances through high-performance computing , 2007 .

[49]  Zdeněk P. Bažant,et al.  Confinement-shear lattice CSL model for fracture propagation in concrete , 2006 .

[50]  J. Mier,et al.  Geometrical and structural aspects of concrete fracture , 1990 .

[51]  Jeffrey J. Thomas,et al.  Composition and density of nanoscale calcium-silicate-hydrate in cement. , 2007, Nature materials.

[52]  James T. Baylot,et al.  Lattice Discrete Particle Model (LDPM) for Fracture Dynamics and Rate Effect in Concrete , 2008 .

[53]  Elisabeth Bouchaud,et al.  Anomalous scaling of mortar fracture surfaces. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  P. Cundall A computer model for simulating progressive, large-scale movements in blocky rock systems , 1971 .

[55]  Stefano Berton,et al.  Crack band model of fracture in irregular lattices , 2006 .

[56]  T. C. Powers,et al.  Structure and Physical Properties of Hardened Portland Cement Paste , 1958 .

[57]  E. Ramm,et al.  From solids to granulates - Discrete element simulations of fracture and fragmentation processes in geomaterials , 2001 .

[58]  Eric N. Landis,et al.  Three-dimensional work of fracture for mortar in compression , 2000 .

[59]  Dan M. Frangopol,et al.  MULTISCALE MODELING OF INTERACTIVE DIFFUSION PROCESSES IN CONCRETE , 2000 .

[60]  M. F. Kaplan Crack Propagation and the Fracture of Concrete , 1961 .

[61]  N. Sukumar,et al.  Finite element-based model for crack propagation in polycrystalline materials , 2004 .

[62]  J. Bisschop,et al.  Drying shrinkage microcracking in cement-based materials , 2002 .

[63]  Milan Jirásek,et al.  Comparative study on finite elements with embedded discontinuities , 2000 .