Pin-in-the-middle: an efficient block pin assignment methodology for block-level monolithic 3D ICs

In a 2D design, the periphery of a block serves as the optimal pin location since blocks are placed aside horizontally in a single placement layer. However, Monolithic 3D (M3D) integration relieves this boundary constraint by allowing vertical block communication between different tiers based on a nm-scale 3D interconnection pitch. In this paper, we present a design methodology named Pin-in-the-Middle that assigns block pins in the middle of a block using commercial 2D P&R tools to enable efficient block implementation and integration for two-tier block-level M3D ICs. Based on a 28nm two-tier M3D hierarchical design result, we show that our solution offers 13.6% and 24.7% energy-delay-product reduction compared to the M3D design with pins assigned at the block boundaries and its 2D counterpart, respectively.

[1]  Adam M. Izraelevitz,et al.  The Rocket Chip Generator , 2016 .

[2]  Yunsup Lee,et al.  The RISC-V Instruction Set Manual , 2014 .

[3]  Yunsup Lee,et al.  A 45nm 1.3GHz 16.7 double-precision GFLOPS/W RISC-V processor with vector accelerators , 2014, ESSCIRC 2014 - 40th European Solid State Circuits Conference (ESSCIRC).

[4]  Sung Kyu Lim,et al.  Design and CAD methodologies for low power gate-level monolithic 3D ICs , 2014, 2014 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).

[5]  Sung Kyu Lim,et al.  High-density integration of functional modules using monolithic 3D-IC technology , 2013, 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC).

[6]  H.-S. Philip Wong The End of the Road for 2D Scaling of Silicon CMOS and the Future of Device Technology , 2018, 2018 76th Device Research Conference (DRC).

[7]  Sung Kyu Lim,et al.  Compact-2D: A Physical Design Methodology to Build Commercial-Quality Face-to-Face-Bonded 3D ICs , 2018, ISPD.

[8]  Sung Kyu Lim,et al.  Power-performance study of block-level monolithic 3D-ICs considering inter-tier performance variations , 2014, 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC).