Influence of the population size on the genetic algorithm performance in case of cultivation process modelling

In this paper, an investigation of the influence of the population size on the genetic algorithm (GA) performance for a model parameter identification problem, is considered. The mathematical model of an E. coli fed-batch cultivation process is studied. The three model parameters - maximum specific growth rate (μmax), saturation constant (kS) and yield coefficient (YS/X) are estimated using different population sizes. Population sizes between 5 and 200 chromosomes in the population are tested with constant number of generations. In order to obtain meaningful information about the influence of the population size a considerable number of independent runs of the GA are performed. The observed results show that the optimal population size is 100 chromosomes for 200 generations. In this case accurate model parameters values are obtained in reasonable computational time. Further increase of the population size, above 100 chromosomes, does not improve the solution accuracy. Moreover, the computational time is increased significantly.

[1]  Tarek Y. ElMekkawy,et al.  Tuning the Parameters of a Memetic Algorithm to Solve Vehicle Routing Problem with Backhauls Using Design of Experiments , 2007 .

[2]  Thomas Bartz-Beielstein,et al.  Experimental Research in Evolutionary Computation - The New Experimentalism , 2010, Natural Computing Series.

[3]  ISMAEL FERRUSQUÍA-VILLAFRANCA,et al.  Chapter 13 , 2003, Dear Kamala.

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[6]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[7]  Colin R. Reeves,et al.  Using Genetic Algorithms with Small Populations , 1993, ICGA.

[8]  Alan Piszcz,et al.  Genetic programming: optimal population sizes for varying complexity problems , 2006, GECCO '06.

[9]  Thomas Stützle,et al.  A Racing Algorithm for Configuring Metaheuristics , 2002, GECCO.

[10]  C. Wandrey,et al.  Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor , 2004, Bioprocess and biosystems engineering.

[11]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[12]  Pedro A. Diaz-Gomez,et al.  Initial Population for Genetic Algorithms: A Metric Approach , 2007, GEM.

[13]  Olympia Roeva,et al.  Fed-Batch Cultivation Control Based on Genetic Algorithm PID Controller Tuning , 2010, NMA.

[14]  Enda Ridge,et al.  Design of Experiments for the Tuning of Optimisation Algorithms , 2007 .

[15]  Cláudio F. Lima,et al.  A review of adaptive population sizing schemes in genetic algorithms , 2005, GECCO '05.

[16]  Miguel A. Vega-Rodríguez,et al.  AlineaGA—a genetic algorithm with local search optimization for multiple sequence alignment , 2010, Applied Intelligence.

[17]  Eric Goodman,et al.  Investigations in meta-GAs: panaceas or pipe dreams? , 2005, GECCO '05.

[18]  David E. Goldberg,et al.  Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence , 2000, GECCO.

[19]  Jacek Kucharski,et al.  GPU-based tuning of quantum-inspired genetic algorithm for a combinatorial optimization problem , 2012 .

[20]  V. K. Koumousis,et al.  A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance , 2006, IEEE Transactions on Evolutionary Computation.

[21]  D. Dochain,et al.  On-Line Estimation and Adaptive Control of Bioreactors , 2013 .

[22]  David E. Goldberg,et al.  The parameter-less genetic algorithm in practice , 2004, Inf. Sci..

[23]  Olympia Roeva,et al.  Improvement of genetic algorithm performance for identification of cultivation process models , 2008 .

[24]  Hussain N. Al-Duwaish A genetic approach to the identification of linear dynamical systems with static nonlinearities , 2000, Int. J. Syst. Sci..

[25]  A. Wolfe,et al.  Effects of mutations in acetate metabolism on high-cell-density growth of Escherichia coli , 2000, Journal of Industrial Microbiology and Biotechnology.

[26]  Kouame Kan Benjamin,et al.  Genetic Algorithms Using for a Batch Fermentation Process Identification , 2008 .

[27]  Martin Pelikan,et al.  Bayesian Optimization Algorithm , 2005 .

[28]  Stefka Fidanova Simulated Annealing: A Monte Carlo Method for GPS Surveying , 2006, International Conference on Computational Science.

[29]  Gunhan Mirac Bayhan,et al.  A hybrid genetic algorithm for mixed model assembly line balancing problem with parallel workstations and zoning constraints , 2011, Eng. Appl. Artif. Intell..

[30]  J.T. Alander,et al.  On optimal population size of genetic algorithms , 1992, CompEuro 1992 Proceedings Computer Systems and Software Engineering.

[31]  N. Volk,et al.  Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli , 2003, Bioprocess and biosystems engineering.

[32]  Bernd Hitzmann,et al.  Feed Forward/Feedback Control of Glucose Concentration During Cultivation of Escherichia Coli , 2001 .

[33]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .