Nonsmooth Analysis of Lorentz Invariant Functions
暂无分享,去创建一个
[1] Adrian S. Lewis,et al. Nonsmooth analysis of eigenvalues , 1999, Math. Program..
[2] Michel Baes,et al. Spectral Functions on Jordan Algebras: Differentiability and Convexity Properties , 2004 .
[3] Defeng Sun,et al. Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..
[4] Osman Güler,et al. Hyperbolic Polynomials and Interior Point Methods for Convex Programming , 1997, Math. Oper. Res..
[5] Defeng Sun,et al. Complementarity Functions and Numerical Experiments on Some Smoothing Newton Methods for Second-Order-Cone Complementarity Problems , 2003, Comput. Optim. Appl..
[6] A. S. Lewis,et al. Derivatives of Spectral Functions , 1996, Math. Oper. Res..
[7] Defeng Sun,et al. Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras , 2008, Math. Oper. Res..
[8] F. Clarke. Optimization And Nonsmooth Analysis , 1983 .
[9] Hristo S. Sendov,et al. Quadratic expansions of spectral functions , 2002 .
[10] A. Lewis,et al. The lax conjecture is true , 2003, math/0304104.
[11] Adrian S. Lewis,et al. Convex Analysis on the Hermitian Matrices , 1996, SIAM J. Optim..
[12] Hristo S. Sendov. Variational Spectral Analysis , 2000 .
[13] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[14] Jean-Baptiste Hiriart-Urruty,et al. The Clarke and Michel-Penot Subdifferentials of the Eigenvalues of a Symmetric Matrix , 1999, Comput. Optim. Appl..
[15] 丸山 徹. Convex Analysisの二,三の進展について , 1977 .
[16] Hristo S. Sendov,et al. Nonsmooth Analysis of Singular Values. Part I: Theory , 2005 .
[17] Yu. S. Ledyaev,et al. Nonsmooth analysis and control theory , 1998 .
[18] A. Lewis. The Convex Analysis of Unitarily Invariant Matrix Functions , 1995 .
[19] Hristo S. Sendov,et al. Nonsmooth Analysis of Singular Values. Part II: Applications , 2005 .
[20] Adrian S. Lewis,et al. Self-concordant barriers for hyperbolic means , 2001, Math. Program..
[21] Heinz H. Bauschke,et al. Hyperbolic Polynomials and Convex Analysis , 2001, Canadian Journal of Mathematics.
[22] James Renegar,et al. Hyperbolic Programs, and Their Derivative Relaxations , 2006, Found. Comput. Math..