Nonsmooth Analysis of Lorentz Invariant Functions

A real valued function $g(x,t)$ on ${\mathbb{R}}^n \times {\mathbb{R}}$ is called a Lorentz invariant if $g(x,t)=g(Ux,t)$ for all $n \times n$ orthogonal matrices $U$ and all $(x,t)$ in the domain of $g$. In other words, $g$ is invariant under the linear orthogonal transformations preserving the Lorentz cone: $\{(x,t) \in {\mathbb{R}}^n \times {\mathbb{R}} \,|\, t \ge \|x\| \}$. It is easy to see that every Lorentz invariant function can be decomposed as $g=f \circ \beta$, where $f : {\mathbb{R}}^2 \rightarrow {\mathbb{R}}$ is a symmetric function and $\beta$ is the root map of the hyperbolic polynomial $p(x,t)=t^2-x_1^2-\cdots -x_n^2$. We investigate a variety of important variational and nonsmooth properties of $g$ and characterize them in terms of the symmetric function $f$.

[1]  Adrian S. Lewis,et al.  Nonsmooth analysis of eigenvalues , 1999, Math. Program..

[2]  Michel Baes,et al.  Spectral Functions on Jordan Algebras: Differentiability and Convexity Properties , 2004 .

[3]  Defeng Sun,et al.  Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems , 2003, Math. Oper. Res..

[4]  Osman Güler,et al.  Hyperbolic Polynomials and Interior Point Methods for Convex Programming , 1997, Math. Oper. Res..

[5]  Defeng Sun,et al.  Complementarity Functions and Numerical Experiments on Some Smoothing Newton Methods for Second-Order-Cone Complementarity Problems , 2003, Comput. Optim. Appl..

[6]  A. S. Lewis,et al.  Derivatives of Spectral Functions , 1996, Math. Oper. Res..

[7]  Defeng Sun,et al.  Löwner's Operator and Spectral Functions in Euclidean Jordan Algebras , 2008, Math. Oper. Res..

[8]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[9]  Hristo S. Sendov,et al.  Quadratic expansions of spectral functions , 2002 .

[10]  A. Lewis,et al.  The lax conjecture is true , 2003, math/0304104.

[11]  Adrian S. Lewis,et al.  Convex Analysis on the Hermitian Matrices , 1996, SIAM J. Optim..

[12]  Hristo S. Sendov Variational Spectral Analysis , 2000 .

[13]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[14]  Jean-Baptiste Hiriart-Urruty,et al.  The Clarke and Michel-Penot Subdifferentials of the Eigenvalues of a Symmetric Matrix , 1999, Comput. Optim. Appl..

[15]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[16]  Hristo S. Sendov,et al.  Nonsmooth Analysis of Singular Values. Part I: Theory , 2005 .

[17]  Yu. S. Ledyaev,et al.  Nonsmooth analysis and control theory , 1998 .

[18]  A. Lewis The Convex Analysis of Unitarily Invariant Matrix Functions , 1995 .

[19]  Hristo S. Sendov,et al.  Nonsmooth Analysis of Singular Values. Part II: Applications , 2005 .

[20]  Adrian S. Lewis,et al.  Self-concordant barriers for hyperbolic means , 2001, Math. Program..

[21]  Heinz H. Bauschke,et al.  Hyperbolic Polynomials and Convex Analysis , 2001, Canadian Journal of Mathematics.

[22]  James Renegar,et al.  Hyperbolic Programs, and Their Derivative Relaxations , 2006, Found. Comput. Math..