Atmospheric Stability Influences on Coupled Boundary Layer and Canopy Turbulence

AbstractLarge-eddy simulation of atmospheric boundary layers interacting with a coupled and resolved plant canopy reveals the influence of atmospheric stability variations from neutral to free convection on canopy turbulence. The design and implementation of a new multilevel canopy model is presented. Instantaneous fields from the simulations show that organized motions on the scale of the atmospheric boundary layer (ABL) depth bring high momentum down to canopy top, locally modulating the vertical shear of the horizontal wind. The evolution of these ABL-scale structures with increasing instability and their impact on vertical profiles of turbulence moments and integral length scales within and above the canopy are discussed. Linkages between atmospheric turbulence and biological control impact horizontal scalar source distributions. Decreasing spatial correlation between momentum and scalar fluxes with increasing instability results from ABL-scale structures spatially segregating momentum and scalar exch...

[1]  J. D. Tarpley,et al.  Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model , 2003 .

[2]  E. Bou‐Zeid,et al.  Coherent Structures and the Dissimilarity of Turbulent Transport of Momentum and Scalars in the Unstable Atmospheric Surface Layer , 2011 .

[3]  J. McWilliams,et al.  A grid nesting method for large-eddy simulation of planetary boundary-layer flows , 1996 .

[4]  H. Pan,et al.  Interaction between soil hydrology and boundary-layer development , 1987 .

[5]  B. Stevens,et al.  Structure of the Entrainment Zone Capping the Convective Atmospheric Boundary Layer , 1998 .

[6]  G. Katul,et al.  Turbulent eddy motion at the forest‐atmosphere interface , 1997 .

[7]  James G. Brasseur,et al.  Three-Dimensional Buoyancy- and Shear-Induced Local Structure of the Atmospheric Boundary Layer , 1998 .

[8]  J. Finnigan,et al.  A wind tunnel study of air flow in waving wheat: Two-point velocity statistics , 1994 .

[9]  P. Sullivan,et al.  A Comparison of Shear- and Buoyancy-Driven Planetary Boundary Layer Flows , 1994 .

[10]  Atul K. Jain,et al.  Global carbon budget 2013 , 2013 .

[11]  A. Thom The exchange of momentum, mass, and heat between an artificial leaf and the airflow in a wind‐tunnel , 1968 .

[12]  M. J. Dwyer,et al.  Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy , 1997 .

[13]  E. Patton,et al.  The Effect of Mesh Resolution on Convective Boundary Layer Statistics and Structures Generated by Large-Eddy Simulation , 2011 .

[14]  A. Holtslag,et al.  An Intercomparison of Large-Eddy Simulations of the Stable Boundary Layer , 2004 .

[15]  M. Raupach,et al.  Averaging procedures for flow within vegetation canopies , 1982 .

[16]  K. Weligepolage,et al.  Effect of sub-layer corrections on the roughness parameterization of a Douglas fir forest , 2012 .

[17]  John C. Wyngaard,et al.  Local Free Convection, Similarity, and the Budgets of Shear Stress and Heat Flux , 1971 .

[18]  J. Kaimal,et al.  Spectral Characteristics of Surface-Layer Turbulence , 1972 .

[19]  M. Irvine,et al.  Temperature–Humidity Dissimilarity and Heat-to-water-vapour Transport Efficiency Above and Within a Pine Forest Canopy: the Role of the Bowen Ratio , 2006 .

[20]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[21]  H. Jonker,et al.  Large-Eddy Simulation: How Large is Large Enough? , 2004 .

[22]  E. Schulze,et al.  Leaf nitrogen, photosynthesis, conductance and transpiration : scaling from leaves to canopies , 1995 .

[23]  Susan L. Ustin,et al.  Evaluated Crop Evapotranspiration over a Region of Irrigated Orchards with the Improved ACASA–WRF Model , 2014 .

[24]  Kenneth J. Davis,et al.  The influence of a forest canopy on top‐down and bottom‐up diffusion in the planetary boundary layer , 2003 .

[25]  J. Finnigan,et al.  A wind tunnel study of air flow in waving wheat: Single-point velocity statistics , 1994 .

[26]  William J. Massman,et al.  Coupling biochemical and biophysical processes at the leaf level: an equilibrium photosynthesis model for leaves of C3 plants , 1995 .

[27]  T. W. Horst,et al.  Description and Evaluation of the Characteristics of the NCAR High-Resolution Land Data Assimilation System , 2007 .

[28]  R. Shaw Secondary Wind Speed Maxima Inside Plant Canopies , 1977 .

[29]  C. Simmer,et al.  Detection of Entrainment Influences on Surface-Layer Measurements and Extension of Monin–Obukhov Similarity Theory , 2014, Boundary-Layer Meteorology.

[30]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[31]  G. Katul,et al.  Spectral Short-circuiting and Wake Production within the Canopy Trunk Space of an Alpine Hardwood Forest , 2008 .

[32]  James M. Wallace,et al.  The wall region in turbulent shear flow , 1972, Journal of Fluid Mechanics.

[33]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[34]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[35]  G. Collatz,et al.  Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer , 1991 .

[36]  B. Koren,et al.  Large-eddy simulation with accurate implicit subgrid-scale diffusion , 1996 .

[37]  H. Schmid,et al.  Spectral Characteristics and Correction of Long-Term Eddy-Covariance Measurements Over Two Mixed Hardwood Forests in Non-Flat Terrain , 2004 .

[38]  R. Stull An Introduction to Boundary Layer Meteorology , 1988 .

[39]  D. Lenschow,et al.  How long is long enough when measuring fluxes and other turbulence statistics , 1994 .

[40]  S. Dupont,et al.  Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment , 2012 .

[41]  W. Brutsaert On a derivable formula for long-wave radiation from clear skies , 1975 .

[42]  Roger H. Shaw,et al.  Canopy element influences on resolved- and subgrid-scale energy within a large-eddy simulation , 2003 .

[43]  Donald H. Lenschow,et al.  An Objective Method for Deriving Atmospheric Structure from Airborne Lidar Observations , 2000 .

[44]  C. Moeng A Large-Eddy-Simulation Model for the Study of Planetary Boundary-Layer Turbulence , 1984 .

[45]  R. Shaw,et al.  Two-Point Correlation Analysis Of Neutrally Stratified Flow Within And Above A Forest From Large-Eddy Simulation , 2000 .

[46]  Brani Vidakovic,et al.  Skin temperature perturbations induced by surface layer turbulence above a grass surface , 1998 .

[47]  G. Katul,et al.  The role of coherent turbulent structures in explaining scalar dissimilarity within the canopy sublayer , 2013, Environmental Fluid Mechanics.

[48]  Dennis D. Baldocchi,et al.  A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy , 1988 .

[49]  J. Deardorff Numerical Investigation of Neutral and Unstable Planetary Boundary Layers , 1972 .

[50]  Roger H. Shaw,et al.  Double-averaging methodology and its application to turbulent flow in and above vegetation canopies , 2008 .

[51]  E. Patton Large-Eddy Simulation of Turbulent Flow Above and Within a Plant Canopy , 1997 .

[52]  Gabriel G. Katul,et al.  Quantifying Organization of Atmospheric Turbulent Eddy Motion Using Nonlinear Time Series Analysis , 2003 .

[53]  R. Shaw,et al.  The influence of buoyancy on third-order turbulent velocity statistics within a deciduous forest , 1991 .

[54]  V. Masson,et al.  Water‐vapour variability within a convective boundary‐layer assessed by large‐eddy simulations and IHOP_2002 observations , 2005 .

[55]  J. McWilliams,et al.  A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows , 1994 .

[56]  B. Bonan,et al.  A Land Surface Model (LSM Version 1.0) for Ecological, Hydrological, and Atmospheric Studies: Technical Description and User's Guide , 1996 .

[57]  Ray Leuning,et al.  Modelling Stomatal Behaviour and and Photosynthesis of Eucalyptus grandis , 1990 .

[58]  V. Masson,et al.  Negative water vapour skewness and dry tongues in the convective boundary layer: observations and large-eddy simulation budget analysis , 2007 .

[59]  H. Nepf,et al.  Strong and weak, unsteady reconfiguration and its impact on turbulence structure within plant canopies , 2014 .

[60]  R. Leuning Scaling to a common temperature improves the correlation between the photosynthesis parameters Jmax and Vcmax , 1997 .

[61]  A. Thom,et al.  Turbulence in and above Plant Canopies , 1981 .

[62]  J. Finnigan,et al.  Scalar Concentration Profiles in the Canopy and Roughness Sublayer , 2008 .

[63]  Roger H. Shaw,et al.  Turbulence structure above a vegetation canopy , 2009, Journal of Fluid Mechanics.

[64]  Fei Chen,et al.  Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications , 2009 .

[65]  J. Goudriaan,et al.  Modelling Potential Crop Growth Processes , 1994, Current Issues in Production Ecology.

[66]  B. Lamb,et al.  Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review , 2000 .

[67]  Chin-Hoh Moeng,et al.  The Influence of Idealized Heterogeneity on Wet and Dry Planetary Boundary Layers Coupled to the Land Surface. , 2005 .

[68]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[69]  J. Finnigan,et al.  A simple unified theory for flow in the canopy and roughness sublayer , 2007 .

[70]  Ulrich Schumann,et al.  Large-eddy simulation of turbulent flow above and within a forest , 1992 .

[71]  S. Dupont,et al.  Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: The CHATS experiment , 2012 .

[72]  Yadvinder Malhi,et al.  A Re-Evaluation of Long-Term Flux Measurement Techniques Part I: Averaging and Coordinate Rotation , 2003 .

[73]  M. Chamecki,et al.  Large-eddy simulation of turbulence and particle dispersion inside the canopy roughness sublayer , 2014, Journal of Fluid Mechanics.

[74]  A. Mueller Atmospheric Boundary Layer Flows Their Structure And Measurement , 2016 .

[75]  Gil Bohrer,et al.  Exploring the Effects of Microscale Structural Heterogeneity of Forest Canopies Using Large-Eddy Simulations , 2009 .

[76]  Ulrich Schumann,et al.  Coherent structure of the convective boundary layer derived from large-eddy simulations , 1989, Journal of Fluid Mechanics.

[77]  W. Willmarth,et al.  Structure of the Reynolds stress near the wall , 1972, Journal of Fluid Mechanics.

[78]  X. J. Zhang,et al.  Retrieval of turbulent pressure fluctuations at the ground surface beneath a forest , 1990 .

[79]  R. Rotunno,et al.  Vertical-Velocity Skewness in the Buoyancy-Driven Boundary Layer , 1990 .

[80]  J. C. R. Hunt,et al.  Free-stream turbulence near plane boundaries , 1978, Journal of Fluid Mechanics.

[81]  B. Vidakovic,et al.  Active Turbulence and Scalar Transport near the Forest–Atmosphere Interface , 1998 .

[82]  J. Monteith,et al.  Principles of Environmental Physics , 2014 .

[83]  J. Canadell,et al.  Global potential of biospheric carbon management for climate mitigation , 2014, Nature Communications.

[84]  Steven A. Orszag,et al.  Numerical Methods for the Simulation of Turbulence , 1969 .

[85]  R. Monson,et al.  Isoprene and monoterpene emission rate variability: Model evaluations and sensitivity analyses , 1993 .

[86]  S. Dupont,et al.  Influence of foliar density profile on canopy flow: A large-eddy simulation study , 2008 .

[87]  L. Mahrt Boundary‐layer moisture regimes , 1991 .

[88]  K. Davis,et al.  Decaying Scalars Emitted By A Forest Canopy: A Numerical Study , 2001 .

[89]  T. W. Horst,et al.  The Canopy Horizontal Array Turbulence Study , 2011 .

[90]  Y. Xue,et al.  Modeling of land surface evaporation by four schemes and comparison with FIFE observations , 1996 .

[91]  R. Shaw,et al.  Turbulent Statistics of Neutrally Stratified Flow Within and Above a Sparse Forest from Large-Eddy Simulation and Field Observations , 1998 .

[92]  D. Lenschow,et al.  A Comparison of Higher-Order Vertical Velocity Moments in the Convective Boundary Layer from Lidar with In Situ Measurements and Large-Eddy Simulation , 2012, Boundary-Layer Meteorology.

[93]  Patricia L. Wiberg,et al.  Relative importance of local and regional controls on coupled water, carbon, and energy fluxes , 2001 .

[94]  Atul K. Jain,et al.  Global Carbon Budget 2018 , 2014, Earth System Science Data.

[95]  J. Deardorff Stratocumulus-capped mixed layers derived from a three-dimensional model , 1980 .

[96]  T. Foken,et al.  Organised Motion in a Tall Spruce Canopy: Temporal Scales, Structure Spacing and Terrain Effects , 2007 .

[97]  R. Moser,et al.  Spectral methods for the Navier-Stokes equations with one infinite and two periodic directions , 1991 .

[98]  John C. Wyngaard,et al.  Spectral analysis of large-eddy simulations of the convective boundary layer , 1988 .

[99]  R. Shaw,et al.  Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest , 1988 .

[100]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part II: Preliminary Model Validation , 2001 .

[101]  R. Shaw,et al.  Conditional analysis of temperature and humidity microfronts and ejection/sweep motions within and above a deciduous forest , 1992 .

[102]  J. Wyngaard Turbulence in the Atmosphere: Contents , 2010 .

[103]  A. Holtslag,et al.  Scaling Variances of Scalars in a Convective Boundary Layer Under Different Entrainment Regimes , 2006 .

[104]  J. Finnigan,et al.  Turbulent Transport in Flexible Plant Canopies , 1985 .

[105]  J. Finnigan,et al.  Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy , 1996 .

[106]  Ivan Marusic,et al.  Evidence of very long meandering features in the logarithmic region of turbulent boundary layers , 2007, Journal of Fluid Mechanics.