Topological determinants of synchronizability of oscillators on large complex networks

Synchronized oscillations play an important role in many biological systems. In recent years, much work has been done on oscillating biomolecular systems, both experimentally and theoretically. A better insight into oscillation mechanisms, coupling strategies and related biological processes is gained by quantitative analysis. Here we summarized some of recent work on oscillation and synchronization in biological systems and reviewed the basic concepts of synchronization of coupled oscillators and dynamics on complex networks.

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[3]  M P Young,et al.  Anatomical connectivity defines the organization of clusters of cortical areas in the macaque monkey and the cat. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  Sune Danø,et al.  Quantitative characterization of cell synchronization in yeast , 2007, Proceedings of the National Academy of Sciences.

[5]  R. May,et al.  Stability and Complexity in Model Ecosystems , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[6]  Yamir Moreno,et al.  Synchronization of Kuramoto oscillators in scale-free networks , 2004 .

[7]  Barbara M. Bakker,et al.  How yeast cells synchronize their glycolytic oscillations: a perturbation analytic treatment. , 2000, Biophysical journal.

[8]  Ryoichiro Kageyama,et al.  Oscillator mechanism of notch pathway in the segmentation clock , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  Martin Egli,et al.  Structural Insights into a Circadian Oscillator , 2008, Science.

[10]  S. Harmer,et al.  The circadian system in higher plants. , 2009, Annual review of plant biology.

[11]  J. Hasty,et al.  Synchronizing genetic relaxation oscillators by intercell signaling , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Sara Hooshangi,et al.  From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. , 2008, Current opinion in biotechnology.

[13]  Jürgen Kurths,et al.  Structural and functional clusters of complex brain networks , 2006 .

[14]  Y. Lai,et al.  Abnormal synchronization in complex clustered networks. , 2006, Physical review letters.

[15]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[16]  Michael A. Henson,et al.  Cell ensemble modeling of metabolic oscillations in continuous yeast cultures , 2005, Comput. Chem. Eng..

[17]  P. Más,et al.  Time for circadian rhythms: plants get synchronized. , 2009, Current opinion in plant biology.

[18]  G. Cecchi,et al.  Scale-free brain functional networks. , 2003, Physical review letters.

[19]  Changsong Zhou,et al.  Universality in the synchronization of weighted random networks. , 2006, Physical review letters.

[20]  Didier Gonze,et al.  Coupling oscillations and switches in genetic networks , 2010, Biosyst..

[21]  Hiroshi Kori,et al.  Strong effects of network architecture in the entrainment of coupled oscillator systems. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Alex Arenas,et al.  Synchronization reveals topological scales in complex networks. , 2006, Physical review letters.

[23]  R. Moore,et al.  Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections , 2001, Brain Research.

[24]  E. Bullmore,et al.  Adaptive reconfiguration of fractal small-world human brain functional networks , 2006, Proceedings of the National Academy of Sciences.

[25]  J. Kurths,et al.  Structure–function relationship in complex brain networks expressed by hierarchical synchronization , 2007 .

[26]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[27]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[28]  Ryoichiro Kageyama,et al.  Oscillations, clocks and segmentation. , 2003, Current opinion in genetics & development.

[29]  Barbara M. Bakker,et al.  Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in populations of yeast cells. , 1996, European journal of biochemistry.

[30]  A. Mikhailov,et al.  Entrainment of randomly coupled oscillator networks by a pacemaker. , 2004, Physical review letters.

[31]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[32]  R. Spigler,et al.  The Kuramoto model: A simple paradigm for synchronization phenomena , 2005 .

[33]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[34]  E. Bullmore,et al.  Neurophysiological architecture of functional magnetic resonance images of human brain. , 2005, Cerebral cortex.

[35]  Martin Egli,et al.  Elucidating the Ticking of an In Vitro Circadian Clockwork , 2007, PLoS biology.

[36]  Luonan Chen,et al.  Synchronization of genetic oscillators. , 2008, Chaos.

[37]  K. Sneppen,et al.  Oscillations and temporal signalling in cells , 2007, Physical biology.

[38]  S. Strogatz Exploring complex networks , 2001, Nature.

[39]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[40]  H. Sohn,et al.  Ultradian metabolic oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide, a population synchronizer, is produced by sulphite reductase , 2001, Yeast.

[41]  J. Carlson,et al.  The Pendulum Clock. , 1991 .

[42]  Sandeep Krishna,et al.  Oscillation patterns in negative feedback loops , 2006, Proceedings of the National Academy of Sciences.

[43]  S. Yamaguchi,et al.  Synchronization of Cellular Clocks in the Suprachiasmatic Nucleus , 2003, Science.

[44]  Danielle Smith Bassett,et al.  Small-World Brain Networks , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[45]  H. Sohn,et al.  Ultradian oscillation of Saccharomyces cerevisiae during aerobic continuous culture: hydrogen sulphide mediates population synchrony , 2000, Yeast.

[46]  R. Lewis,et al.  Calcium oscillations in T-cells: mechanisms and consequences for gene expression. , 2003, Biochemical Society transactions.

[47]  Sune Danø,et al.  Dynamical quorum sensing: Population density encoded in cellular dynamics , 2007, Proceedings of the National Academy of Sciences.

[48]  A. Winfree The geometry of biological time , 1991 .

[49]  O. Sporns,et al.  Organization, development and function of complex brain networks , 2004, Trends in Cognitive Sciences.

[50]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[51]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[52]  Alex Arenas,et al.  Paths to synchronization on complex networks. , 2006, Physical review letters.

[53]  E. Ott,et al.  Onset of synchronization in large networks of coupled oscillators. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  T. Kondo,et al.  Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro , 2005, Science.

[55]  A. Winfree Biological rhythms and the behavior of populations of coupled oscillators. , 1967, Journal of theoretical biology.

[56]  J. Kurths,et al.  Hierarchical synchronization in complex networks with heterogeneous degrees. , 2006, Chaos.

[57]  Matthias Reuss,et al.  Cell population modelling of yeast glycolytic oscillations. , 2002, The Biochemical journal.

[58]  C. J. Stam,et al.  Functional connectivity patterns of human magnetoencephalographic recordings: a ‘small-world’ network? , 2004, Neuroscience Letters.

[59]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[60]  Rae Silver,et al.  Phase Resetting Light Pulses Induce Per1 and Persistent Spike Activity in a Subpopulation of Biological Clock Neurons , 2003, The Journal of Neuroscience.

[61]  L. Kozma-Bognár,et al.  Synchronization of the Fungal and the Plant Circadian Clock by Light , 2008, Chembiochem : a European journal of chemical biology.

[62]  R. Moore,et al.  Circadian rhythms: basic neurobiology and clinical applications. , 1997, Annual review of medicine.

[63]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[64]  Changsong Zhou,et al.  Hierarchical organization unveiled by functional connectivity in complex brain networks. , 2006, Physical review letters.

[65]  Marcus Kaiser,et al.  Clustered organization of cortical connectivity , 2007, Neuroinformatics.

[66]  Reinhart Heinrich,et al.  Effect of cellular interaction on glycolytic oscillations in yeast: a theoretical investigation. , 2000, The Biochemical journal.

[67]  Nazim Madhavji,et al.  Organization , 2020, WER.

[68]  Monika Sharma,et al.  Chemical oscillations , 2006 .